Acta Applicandae Mathematica

, Volume 3, Issue 3, pp 285–311

Generalized Markov fields and Dirichlet forms

  • Michael Röckner
Article

Abstract

We prove that Gaussian measure-indexed random fields, of which the covariance functional is given by the dual form of a transient Dirichlet form, have the global Markov property (where ‘global’ here means ‘w.r.t. arbitrary, not necessarily open sets’), if and only if the Dirichlet form has the local property. Applications to Nelson's free Euclidean field of quantum theory and to Rozanov's generalized random functions are given.

AMS (MOS) subject classifications (1980)

Primary: 60G60 secondary: 60J45 

Key words

Markov property Gaussian generalized fields prediction problem Dirichlet spaces measures of bounded energy balayage of measures capacities spectral synthesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adler, R. J.: The Geometry of Random Fields, J. Wiley, Chichester, 1981.Google Scholar
  2. 2.
    Albeverio, S. and Høegh-Krohn, R.: Dirichlet Forms and Diffusion Processes on Rigged Hilbert Spaces; Z. Wahrsch. verw. Gebiete 40 (1977), 1–57.Google Scholar
  3. 3.
    Albeverio, S. and Høegh-Krohn, R.: ‘Uniqueness and the Global Markov Property for Euclidean Fields. The Case of Trigonometric Interactions’, Commun. Math. Phys. 68 (1979), 95–128.Google Scholar
  4. 4.
    Albeverio, S. and Høegh-Krohn, R.: ‘Diffusion Fields, Quantum Fields, Fields with Values in Lie Groups’, to appear in M. Pinsky (ed.), Advances in Prob. Stoch. Diff. Equations, M. Dekker, 1984.Google Scholar
  5. 5.
    Albeverio, S., Høegh-Krohn, R., and Streit, L.: ‘Energy Forms, Hamiltonians, and Distorted Brownian Paths’, J. Math. Phys. 18 (1977), 907–917.Google Scholar
  6. 6.
    Atkinson, B.: ‘On Dynkin's Markov Property of Random Fields Associated with Symmetric Processes’, Stoch. Proc. Appl. 15 (1983), 193–201.Google Scholar
  7. 7.
    Beurling, A. and Deny, J.: ‘Espaces de Dirichlet’, Acta Math. 99 (1958), 203–224.Google Scholar
  8. 8.
    Beurling, A. and Deny, J.: ‘Dirichlet Spaces’, Proc. Nat. Acad. Sci. 45 (1959), 208–215.Google Scholar
  9. 9.
    Bliedtner, J.: Dirichlet Forms on Regular Functional Spaces, Lecture Notes in Math. Vol. 226, Springer, Berlin, 1971, pp. 15–62.Google Scholar
  10. 10.
    Blumenthal, R. M. and Getoor, R. K.: Markov Processes and Potential Theory, Academic Press, New York, 1968.Google Scholar
  11. 11.
    Carillo Menendez, S.: ‘Processus de Markov associé à une forme de Dirichlet non symétrique’, Z. Wahrsch. verw. Gebiete 33 (1975), 139–154.Google Scholar
  12. 12.
    Cartan, H.: ‘Sur les fondements de la théorie du potentiel’, Bull. Soc. Math. France 69 (1941), 71–96.Google Scholar
  13. 13.
    Cartan, H.: ‘Théorie du potential newtonien: énergie, capacité, suites de potentials’, Bull. Soc. Math. France 73 (1945).Google Scholar
  14. 14.
    Cartan, H.: ‘Théorie générale du balayage en potentiel newtonien’, Ann. Grenoble, Math. Phys. 22 (1946), 221–280.Google Scholar
  15. 15.
    Constantinescu, C. and Cornea, A.: Potential Theory on Harmonic Spaces, Grundlehren der mathematischen Wissenschaften, Vol. 158, Springer, Berlin, Heidelberg, New York, 1972.Google Scholar
  16. 16.
    Deny, J.: ‘Les potentiels d'énergie finie’, Acta Math. 82 (1950), 107–183.Google Scholar
  17. 17.
    Dynkin, E. B.: Markov Processes Vols. I and II. Springer, Berlin, Heidelberg, New York, 1965.Google Scholar
  18. 18.
    Dynkin, E. B.: ‘Markov Processes and Random Fields’, Bull. Amer. Math. Soc. 3 (1980), 975–999.Google Scholar
  19. 19.
    Dynkin, E. B.: ‘Green's and Dirichlet Spaces Associated with Fine Markov Processes’, J. Funct. Anal. 47 (1982), 381–418.Google Scholar
  20. 20.
    Dynkin, E. B.: ‘Theory and Applications of Random Fields’, in G.Kallianpur (ed.), Lecture Notes in Control and Inform. Sci. Vol. 49, Springer, New York, 1983.Google Scholar
  21. 21.
    Fukushima, M.: Dirichlet Forms and Markov Processes, North Holland, Amsterdam, Oxford, New York, 1980.Google Scholar
  22. 22.
    Helms, L. L.: Introduction to Potential Theory, Wiley-Interscience, New York, 1969.Google Scholar
  23. 23.
    Kallianpur, G. and Mandrekar, V.: ‘Markov Property for Generalized Gaussian Random Fields’, Ann. Inst. Fourier. Grenoble 24 (1974), 143–167; MR 53 9362.Google Scholar
  24. 24.
    Künsch, H.: ‘Gaussian Markov Random Fields’, J. Fac. Sci. Univ. Tokyo. Sec. IA 26 (1979), 53–73.Google Scholar
  25. 25.
    Kusuoka, S.: ‘Dirichlet Forms and Diffusion Processes on Banach Spaces’, J. Fac. Sci. Univ. Tokyo, Sec. IA 29 (1982), 79–95.Google Scholar
  26. 26.
    LeJan, Y.: ‘Balayage et formes de Dirichlet. Applications’, Bull. Soc. Math. France 106 (1978), 61–112.Google Scholar
  27. 27.
    Lévy, P.: Processus stochastiques et mouvement Brownian, Gauthier-Villars, Paris, 1974.Google Scholar
  28. 28.
    Maeda, F. Y.: ‘Energy of Functions on a Self-adjoint Harmonic Space II’, Hiroshima Math. 3 (1973), 37–60.Google Scholar
  29. 29.
    Maeda, F. Y.: Dirichlet Integrals on Harmonic Spaces, Lecture Notes in Math. Vol. 803, Springer, Berlin, Heidelberg, New York, 1980.Google Scholar
  30. 30.
    McKean, H. P.Jr.: ‘Brownian Motion with a Several Dimensional Time’, Theo. Prob. Appl. 8 (1963), 335–354.Google Scholar
  31. 31.
    Meyer, P. A.: Probabilités et potential, Hermann, Paris, 1966.Google Scholar
  32. 32.
    Molchan, G. M.: ‘Characterisation of Gaussian Fields with Markovian Property’, Dokl. Akad. Nauk. SSSR 197, (1971). Translation Soviet Math. Dokl. 12 (1973), 563–567.Google Scholar
  33. 33.
    Nelson, E.: ‘The free Markov Fields’, J. Funct. Anal. 12 (1973), 221–227.Google Scholar
  34. 34.
    Paclet, Ph.: ‘Espaces de Dirichlet et capacités fonctionelles sur triplets de Hibert-Schmidt’, Sem. Krée (1978).Google Scholar
  35. 35.
    Pitt, L. D.: ‘A Markov Property for Gaussian Processes with a Multidimensional Parameter’, J. Rational Mech. Anal. (1971), 368–391.Google Scholar
  36. 36.
    Röckner, M.: ‘Markov Property of Generalized Fields and Axiomatic Potential Theory’, Math. Ann. 264 (1983), 153–177.Google Scholar
  37. 37.
    Röckner, M.: ‘Self-adjoint Harmonic Spaces and Dirichlet Forms’, Hiroshima Math. J. 14 (1984), 55–66.Google Scholar
  38. 38.
    Röckner, M. and Wielens, N.: ‘Dirichlet Forms-Closability and Change of Speed Measure’, publ. in preparation.Google Scholar
  39. 39.
    Rozanov, Yu. A.: ‘Markov Random Fields and Stochastic Partial Differential Equations’, Math. USSR-Sbornik, 32 (1977), 515–534.Google Scholar
  40. 40.
    Rozanov, Yu. A.: Stochastic Markovian Fields; Developments in Statistics, Vol. 2, 1979, Chapter 5, pp. 204–234.Google Scholar
  41. 41.
    Rozanov, Yu. A.: Markov Random Fields; Springer, Berlin, Heidelberg, New York, 1982.Google Scholar
  42. 42.
    Silverstein, M. L.: Symmetric Markov Processes, Lecture Notes in Math. Vol. 426, Springer, Berlin, Heidelberg, New York, 1974.Google Scholar

Copyright information

© D. Reidel Publishing Company 1985

Authors and Affiliations

  • Michael Röckner
    • 1
  1. 1.Fakultät für MathematikUniversität BielefeldBielefeldWest Germany

Personalised recommendations