Acta Biotheoretica

, Volume 38, Issue 3–4, pp 303–315 | Cite as

Towards a more dynamic plant morphology

  • Rolf Sattler
Article

Abstract

From the point of view of a dynamic morphology, form is not only the result of process(es) — it is process. This process may be analyzed in terms of two pairs of fundamental processes: growth and decay, differentiation and dedifferentiation. Each of these processes can be analyzed in terms of various modalities (parameters) and submodalities. This paper deals with those of growth (see Table 1). For the purpose of systematits and phylogenetic reconstruction the modalities and submodalities can be considered dynamic characters that have “states”. Each “state” of such a dynamic character is a more detailed process, hence not static. For example, determinate growth represents a “state” of the dynamic character (or modality) of growth duration.

The processes of Table 1 can be applied to the whole plant kingdom (although in certain cases only some processes of the whole set may be applicable). Thus, the diversity of plant form is seen as a diversity of process combinations. From this point of view, change in form implies change in the process combination(s). Questions that arise are, for example, the following: Which process combinations actually occur? Which of these are the most frequent? How and why have process combinations changed during ontogeny and phylogeny?

In comparative morphogenesis, process combinations are compared within an ontogeny or between ontogenies. The combinations may be repeated (i.e., conserved) or changed. Since repetition is limited, regularity that is the basis for structural categories is also limited or relative. With regard to change in process combinations, sequential change within an ontogeny and phylogenetic change between ontogenies can be distinguished. A large number of additional processes, such as heterochrony, that have been investigated by many zoologists and botanists, refer to these sequential and phylogenetic changes.

General implications and consequences of the proposed approach are pointed out. As well, its limits, which are related to the language and concepts used, are discussed. The importance of a dynamic language is emphasized.

Résumé

La forme des plantes non seulement est le résultat de processus, mais aussi le(s) processus même(s). En analysant on peut distinguer deux paires de processus fondamentaux: la croissance et la décomposition, la différentiation et la dédifféerentiation. En ce qui conceme la croissance, on peut distinguer en plus un nombre de modalités et submodalités, chacune aver des “états” qui representent des processus plus détaillés (Table 1). Par exemple, la submodalité de la symétrie a des états de symétrie radiale et dorsiventrale qui representent des processus détaillés de croissance radiale et dorsiventrale.

De ce point de vue, la diversité des formes du règne végétale est une diversité de combinaisons de ces processus. Certaines des combinaisons sont fréquentes tandis que d'autres sont rares.

En morphogenèse comparée on peut distinguer des processus additionels (comme, par example la néoténie) qui désignent la transformation des combinaisons de processus. Cette transformation peut arriver pendant l'ontogenèse et la phylogenèse.

Plusieurs implications et conséquences ainsi que des limites de l'approche proposée sont discutées. Les limites sont attribuables aux notions et au language utilisés. L'importance d'un language basé sur des notions dynamiques est soulignée.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anthony, M., Sattler, R., and Cooney-Sovetts, C. (1983). Morphogenetic potential of Fraxinus omus under the influence of the gall mite Aceria fraxinivora.- Can. J. Bot. 61: 1580–1594.Google Scholar
  2. Bohm, D. (1980). Wholeness and the Implicate Order.- London, Routledge and Kegan Paul.Google Scholar
  3. Carroll, J.B. (1956). Language, Thought, and Reality. Selected Writing of Benjamin Lee Whorf.- New York, Technology Press of MIT and Wiley.Google Scholar
  4. Cooney-Sovetts, C. and Sattler, R. (1987). Phyllociade development in the Asparagaceae: an example of homoeosis.- Bot J. Linn. Soc. 94: 327–371.Google Scholar
  5. Cutter, E.G. (1971). Plant Anatomy. Part 2. Organs.- London, Arnold.Google Scholar
  6. Doyle, J.A. (1978). Origin of angiosperms.- Ann. Rev. Ecol. Syst. 9: 365–392.Google Scholar
  7. Dugle, J.R. and Hawkins, J.L. (1985). Leaf development and morphology in ash: influence of gamma radiation.- Can. J. Bot. 63: 1458–1468.Google Scholar
  8. Etherington, J.R. (1975). Environment and Plant Ecology, London, New York, Wiley.Google Scholar
  9. Gould, S.J. (1977). Ontogeny and Phylogeny.- Cambridge, Harvard Univ. Press.Google Scholar
  10. Green, P.B. (1987). Inheritance of patterns: analysis from phenotype to gene.- Am. Zool. 27: 657–673.Google Scholar
  11. Hallé, F., Oldeman, R.A.A., and Tomlinson, P.B. (1978). Tropical Trees and Forests. An Architectural Analysis.- Berlin, Springer.Google Scholar
  12. Ihlenfeldt, H.-D. (1971). Über ontogenetische Abbreviationen und Zeitkorrelationsänderungen und ihre Bedeutung für Morphologie und Systematik.- Ber. Dtsch. Bot. Ges. 84: 91–107.Google Scholar
  13. Kaplan, D.R. (1980). Heteroblastic leaf development in Acacia: morphological and morphogenetic implications.- Cellule 73: 135–203.Google Scholar
  14. Klotz, G. (1985). Zur Typologie des Blattes.- Flora 176: 189–196.Google Scholar
  15. Lord, E.M. and Hill, J.P. (1987). Evidence for heterochrony in the evolution of plant form. In: R.A. Raff and E.C. Raff, eds., Development as an evolutionary process, 47–70.- New York, Liss.Google Scholar
  16. Merrill, E.K. (1986a). Heteroblastic seedlings of green ash. I. Predictability of leaf form and primordial length.- Can J. Bot. 64: 2645–2649.Google Scholar
  17. Merrill, E.K. (1986b). Heteroblastic seedlings of green ash. II. Early development of simple and compound leaves.- Can. J. Bot. 64: 2650–2661.Google Scholar
  18. Meyen, S.V. (1987). Fundamentals of Palaeobotany. London, Chapman & Hall.Google Scholar
  19. Niklas, K.J. (1982). Computer simulations of early land plant branching morphologies: canalization of patterns during evolution?- Paleobiology 8: 196–210.Google Scholar
  20. Niklas, K.J. (1986). Computer-simulated plant evolution.- Sci. Amer. 254: 76–86.Google Scholar
  21. Popper, K.R. (1966). The Open Society and Its Enemies. Vol. 1, 5th ed.- Princeton, Princeton Univ. Press.Google Scholar
  22. Rothwell, G.W. (1987). The role of development in plant phylogeny: a palaeobotanical perspective.- Rev. Paleobot. Palynol. 50: 97–114.Google Scholar
  23. Rutishauser, R. and Sattler, R. (1986). Architecture and development of the phyllode-stipule whorls of Acacia longipedunculata: controversial interpretations and continuum approach.- Can. J. Bot. 64: 1987–2019.Google Scholar
  24. Sattler, R. (1972). Centrifugal primordial inception in floral development.- Adv. Plant Morph. (1972): 170–178.Google Scholar
  25. Sattler, R. (1974a). A new conception of the shoot of higher plants.- J. Theor. Biol. 47: 367–382.Google Scholar
  26. Sattler, R. (19746). Essentialism in plant morphology.- 14th Int. Congr. Hist. Sci. Proc. No. 3, 464–467.Google Scholar
  27. Sattler, R. (1978). ‘Fusion’ and ‘continuity’ in floral morphology.- Notes Roy. Bot. Gard. Edinburgh 36: 397–405.Google Scholar
  28. Sattler, R. (1986). Biophilosophy. Analytic and Holistic Perspectives. Berlin, Heidelberg, New York, Tokyo, Springer Verlag.Google Scholar
  29. Sattler, R. (1988a). Homeosis in plants.- Amer. J. Bot. 75: 1606–1617Google Scholar
  30. Sattler, R. (1988b). A dynamic multidimensional approach to floral morphology.- In: P. Leins, S.C. Tucker and P.K. Endress, eds., Aspects of Floral Development, 1–6.- Stuttgart, Cramer.Google Scholar
  31. Sattler, R., Luckert, D., and Rutishauser, R. (1988). Symmetry in plants: phyllode and stipule development in Acacia longipedunculata.- Can. J. Bot. 66: 1270–1284.Google Scholar
  32. Stebbins, G.L. (1974). Flowering Plants. Evolution Above the Species Level.- Cambridge, Belknap Press.Google Scholar
  33. Steingraeber, D.A. and Fisher, J.B. (1986). Indeterminate growth of leaves in Guarea (Meliaceae): a twig analogue.- Amer. J. Bot. 73: 852–862.Google Scholar
  34. Takhtajan, A. (1972). Patterns of ontogenetic alterations in the evolution of higher plants.- Phytomorphology 22: 164–170.Google Scholar
  35. Tomlinson, P.B. (1982). Chance and design in the construction of plants.- Acta Biotheor. 31A: 162–183.Google Scholar
  36. Troll, W. (1949). Die Urbildlichkeit der organischen Gestaltung und Goethes Prinzip der Variablen Proportionen.- Experentia (Basel) 5: 491–504.Google Scholar
  37. Troll, W. (1954). Praktische Einführung in die Pflanzenmorphologie. 1. Teil. Der vegetative Aufbau.- Jena, Fischer.Google Scholar
  38. Woodger, J.H. (1967). Biological Principles. Reissued with a new introduction.- New York, Humanities Press.Google Scholar
  39. Zimmermann, W. (1959). Die Phylogenie der Pflanzen. 2nd ed.- Jena, Fischer.Google Scholar
  40. Zimmermann, W. (1961). Phylogenetic shifting of organs, tissues, and phases in the pteridophytes.- Can. J. Bot. 39: 1547–1553.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • Rolf Sattler
    • 1
  1. 1.Biology DepartmentMcGill UniversityMontrealCanada

Personalised recommendations