Advertisement

Acta Applicandae Mathematica

, Volume 7, Issue 3, pp 211–223 | Cite as

CR-structures and Lorentzian geometry

  • K. L. Duggal
Article

Abstract

As a recent excellent example of mutual interplay between the Cauchy-Riemann structure and physical spacetime geometry, we present, in this paper, a few fresh ideas on this fruitful relationship with respect to the conformal geometry and the groups of motions of Lorentzian manifolds.

AMS (MOS) subject classifications (1980)

53C50 83C40 32F25 53A30 

Key words

Complex manifolds Lorentzian geometry isomorphic embedding conformal geometry groups of motion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beem J. K. and Ehrlich P. E.: Global Lorentzian Geometry, Marcel Dekker, New York, 1981.Google Scholar
  2. 2.
    Beem J. K. and Ehrlich P.E.: Gen. Rel. Grav. 17 (1985), 293–300.Google Scholar
  3. 3.
    Clark C. J. S.: Proc. Soc. Lond. Ser. A, 314 (1970), 417–428.Google Scholar
  4. 4.
    Collinson C. D.: J. Math. Phys. 11 (1970), 818–819.Google Scholar
  5. 5.
    Crampin M. and Prince G. E.: Gen. Rel. Grav. 16 (1984), 675–689.Google Scholar
  6. 6.
    Duggal K. L.: Can. Math. Bull. 6, 21 (1978), 289–295.Google Scholar
  7. 7.
    Duggal K. L. and Sharma R.: Gen. Rel. Grav. 18 (1986), 71–77.Google Scholar
  8. 8.
    Eckmann B.: Proc. Int. Congr. Math. 11 (1950), 420–427.Google Scholar
  9. 9.
    Ehresmann C.: Proc. Int. Congr. Math. 11 (1950), 412–419.Google Scholar
  10. 10.
    Eisenhart L. P.: Trans. Am. Math. Soc. 25 (1923), 297–306.Google Scholar
  11. 11.
    Eisenhart L. P.: Trans. Am. Math. Soc. 25 (1924), 205–220.Google Scholar
  12. 12.
    Frolicher A.: Math. Ann. 129 (1955), 50–95.Google Scholar
  13. 13.
    Fialkow A.: Ann. Math. 39 (1938), 762–785.Google Scholar
  14. 14.
    Greenfield S.: Ann. Scuolo Norm. Sup. Pisa 22 (1968), 275–314.Google Scholar
  15. 15.
    Goldberg J. N. and Sachs R. K.: Acta. Phys. Polon. 22 (1962), 13–23.Google Scholar
  16. 16.
    Green, R.: Memoir No. 97 Am. Mth. Soc. (1970).Google Scholar
  17. 17.
    Gödel K.: Rev. Mod. Phys. 21 (1949), 447–450.Google Scholar
  18. 18.
    Hawking S. W. and Ellis G. F. R.: The Large Scale Structure of Space-Time, Cambridge University Press, Cambridge, 1973.Google Scholar
  19. 19.
    Kramer D. Stephani H. MacCallum M., and Herlt E.: Exact Solutions of Einstein's Field Equations, Cambridge University Press, Cambridge, 1980.Google Scholar
  20. 20.
    Kahler E.: Abh. Math. Sem. Hamburg 9 (1933), 173–186.Google Scholar
  21. 21.
    Komar A.: Phys. Rev. 113 (1959), 934–936.Google Scholar
  22. 22.
    Kerr R. P.: Phys. Rev. Lett. 11 (1963), 237–238.Google Scholar
  23. 23.
    Katzin G. H., Levine J., and Davis W. R.: J. Math. Phys. 10 (1969), 617–629.Google Scholar
  24. 24.
    Lerner D. E. and Sommers P. D.: Complex Manifold Techniques in Theoretical Physics, Pitman, London, 1979.Google Scholar
  25. 25.
    Lichnerowicz A.: Theories relativistes de la gravitation et de l'electromagnetisme, Masson, Paris, 1955.Google Scholar
  26. 26.
    Lebrun C. R.: Trans. Am. Math. Soc. 284 (1984), 601–616.Google Scholar
  27. 27.
    Levine J. and Katzin G. H.: Tensor, N.S. 20 (1969), 251–260.Google Scholar
  28. 28.
    Levine J. and Katzin G. H.: Tensor, N.S. 21 (1970), 319–329.Google Scholar
  29. 29.
    Morrow J. and Kodaira K.: Complex Manifolds, Holt, Rinehart and Winston, New York, 1971.Google Scholar
  30. 30.
    Magid M. A.: Proc. Am. Math. Soc. 84 (1982), 237–242.Google Scholar
  31. 31.
    Nöther E.: Nachr. Akad. Wiss. Gottingen. II Math. Phys. 235 (1918), 235–257.Google Scholar
  32. 32.
    Newlander A. and Nirenberg L.: Ann. Math. 65 (1957), 391–404.Google Scholar
  33. 33.
    Nirenberg, L.: CBMS Regional Conf. Ser. in Math. 17. A.M.S., 1973.Google Scholar
  34. 34.
    O'Neill B.: Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York, 1983.Google Scholar
  35. 35.
    Poincaré H.: Rend. Circ. Mat. Palermo. 23 (1907), 185–220.Google Scholar
  36. 36.
    Patterson E. M.: Quart, J. Math. Oxford (2), 2 (1951), 151–158.Google Scholar
  37. 37.
    Penrose, R.: Twistor Theory, Its Aims and Achievements, Quantum Gravity, an Oxford Symposium, Clarendon Press, 1975.Google Scholar
  38. 38.
    Penrose R.: Proc. R. Soc., London, A 284 (1965), 159–203.Google Scholar
  39. 39.
    Penrose R.: Bull. (N.S.) Am. Math. Soc. 8 (1983), 427–448.Google Scholar
  40. 40.
    Robinson I. and Trautman A.: Phy. Rev. Lett. 4 (1960), 431–432.Google Scholar
  41. 41.
    Robinson I. and Schild A.: J. Math. Phys. 4 (1963), 484–489.Google Scholar
  42. 42.
    Raychaudhuri A. K.: Phy. Rev. 98 (1955), 1123–1126.Google Scholar
  43. 43.
    Raychaudhuri A. K.: Phy. Rev. 106 (1957a), 172–173.Google Scholar
  44. 44.
    Raychaudhuri A. K.: Z. Astrophys. 43 (1957b), 161–164.Google Scholar
  45. 45.
    Shouten J. A. and Dantzig D. V.: Math. Ann. 103 (1930), 319–346.Google Scholar
  46. 46.
    Sachs R. K.: Z. Phys. 157 (1960), 462–477.Google Scholar
  47. 47.
    Synge J. L.: Proc. Lond. Math. Soc. 43 (1937), 376–416.Google Scholar
  48. 48.
    Sharma R. and Duggal K. L.: C. R. Acad. Sci. Canada. 7 (1985), 201–205.Google Scholar
  49. 49.
    Trautman A.: Conservation Laws of General Relativity in Gravitation (L. Witten, ed.), John Wiley, New York, 1962.Google Scholar
  50. 50.
    Weyl H.: Gottingen Nachr. 99 (1921), 99–112.Google Scholar
  51. 51.
    Wong Y. C.: Nagoya Math. J. 24 (1964), 67–108.Google Scholar
  52. 52.
    Yano K.: The Theory of Lie Derivatives and its Applications, North-Holland, Amsterdam, 1957.Google Scholar
  53. 53.
    Yano K. and Masahira K.: CR-submanifolds of Kaehlerian and Sasakian Manifolds, Birkhauser, Boston, 1983.Google Scholar
  54. 54.
    Yang C. N.: Phys. Rev. D 16 (1977), 330–331.Google Scholar

Copyright information

© D. Reidel Publishing Company 1986

Authors and Affiliations

  • K. L. Duggal
    • 1
  1. 1.Department of Mathematics and StatisticsUniversity of WindsorWindsorCanada

Personalised recommendations