Advertisement

Acta Applicandae Mathematica

, Volume 23, Issue 1, pp 25–63 | Cite as

Projective geometry with Clifford algebra

  • David Hestenes
  • Renatus Ziegler
Article

Abstract

Projective geometry is formulated in the language of geometric algebra, a unified mathematical language based on Clifford algebra. This closes the gap between algebraic and synthetic approaches to projective geometry and facilitates connections with the rest of mathematics.

AMS subject classifications (1980)

06-XX 08-XX 15-XX 51-XX 

Key words

Projective geometry Clifford algebra Grassmann algebra Invariant theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barnabei, M., Brini, A., and Rota, G.-C.: On the exterior calculus of invariant theory, J. Algebra 96 (1985), 120–160.Google Scholar
  2. 2.
    Doubilet, P., Rota, G.-C., and Stein, J.: On the foundations of combinatorial theory: IX Combinatorial methods of invariant theory, Stud. Appl. Math. 53 (1974), 185–216.Google Scholar
  3. 3.
    Engel, F.: Grassmanns Leben, in Hermann Grassmann's Gesammelte Mathematische und Physikalische Werke III.2, Teubner, Leipzig, 1911 (Reprint: Johnson, New York, 1972).Google Scholar
  4. 4.
    Fano, U. and Racah, G.: Irreducible Tensorial Sets, Academic Press, New York, 1959.Google Scholar
  5. 5.
    Forder, H. G.: The Calculus of Extension, Cambridge Univ. Press, Cambridge, 1941 (Reprint: Chelsea, New York, 1960).Google Scholar
  6. 6.
    Grassmann, H.: Der Ort der Hamilton'schen Quaternionen in der Ausdehnungslehre, Math. Ann., 12 (1877), 375–386 (=Ges. Math. u. Phys. Werke II.1, pp. 268–282).Google Scholar
  7. 7.
    Hestenes, D.: Spacetime Algebra, Gordon and Breach, New York, 1966, 1987.Google Scholar
  8. 8.
    Hestenes, D.: A unified language for mathematics and physics, in J. S. R. Chisholm and A. K. Common (eds.), Clifford Algebras and their Applications in Mathematical Physics, D. Reidel, Dordrecht, 1986, pp. 1–23.Google Scholar
  9. 9.
    Hestenes, D.: New Foundations for Classical Mechanics, D. Reidel, Dordrecht, 1986.Google Scholar
  10. 10.
    Hestenes, D.: Universal geometric algebra, Simon Stevin 63 (1988), 253–274.Google Scholar
  11. 11.
    Hestenes, D.: The design of linear algebra and geometry, Acta Appl. Math. 23 (1991), 65–93.Google Scholar
  12. 12.
    Hestenes, D. and Sobczyk, G.: Clifford Algebra to Geometric Calculus, D. Reidel, Dordrecht, 1984.Google Scholar
  13. 13.
    Judd, B. R.: Angular-momentum theory and projective geometry, Found. Phys., 13 (1983), 51–59.Google Scholar
  14. 14.
    Mehmke, R.: Vorlesungen über Punkt- und Vektorenrechnung, Vol. 1, Teubner, Leipzig, Berlin, 1913.Google Scholar
  15. 15.
    Robinson, G. de B.: Group representations and geometry, J. Math. Phys. 11 (1970), 3428–3432.Google Scholar
  16. 16.
    Rota, G.-C. and Stein, J.: Applications of Cayley algebras, Atti Convegni Lincei 17 (1976), 71–97.Google Scholar
  17. 17.
    Semple, J. G. and Kneebone, G. T.: Algebraic Projective Geometry, Oxford Univ. Press, Oxford, 1952.Google Scholar
  18. 18.
    Turnbull, H. W.: On the vector algebra of eight associated points of three quadric surfaces, Cambridge Phil. Soc. Proc., 22 (1925), 481–487.Google Scholar
  19. 19.
    Turnbull, H. W.: A synthetic application of the symbolic invariant theory to geometry, J. Indian Math. Soc. 17 (1927), 1–20.Google Scholar
  20. 20.
    Whitehead, A. N.: A Treatise on Universal Algebra with Applications, Cambridge University Press, Cambridge, 1898 (Reprint: Hafner, New York, 1960).Google Scholar

Copyright information

© Kluwer Academic Publishers 1991

Authors and Affiliations

  • David Hestenes
    • 1
  • Renatus Ziegler
    • 1
  1. 1.Department of PhysicsArizona State UniversityTempeU.S.A.

Personalised recommendations