, Volume 69, Issue 3, pp 261–265 | Cite as

The ecology and electrophoretic analysis of the damselfly, Argia vivida hagen, living in a geothermal gradient

  • Robert J. Schott
  • Merlyn A. Brusven


The ecology and electrophoretic properties of a damselfly, Argia vivida Hagen, inhabiting a geothermal gradient were studied. Monthly sampling of five sites revealed nymphal colonization along a 15–40°C thermal gradient; greatest densities occurred between 15–27°C. An electrophoretic analysis of proteins suggest that nymphs were adapted to a wide range of temperatures which was evidenced by differential activity of four enzyme systems (glucose-6-phosphate dehydrogenase, lactate dehydrogenase, leucine aminopeptidase, and tetrazolium oxidase). Evidence suggests the nymphs acclimated to different temperatures by altering the structure of important isozymes and expressed certain genetic features characteristic of individuals naturally found at a given temperature.


Argia vivida ecology geothermal gradient protein analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Avise, J. C. 1976. Genetic differentiation during speciation. In: Ayala, F. J. (Ed.), Molecular Evolution. Sinauer Associates, Inc., Sunderland, Mass. 277 pp.Google Scholar
  2. Brock, T. D. 1969. Vertical zonation in hot spring algal mats. Phycologia 8: 201–205.CrossRefGoogle Scholar
  3. Brock, T. D. 1975. Predicting the ecological consequences of thermal, pollution from observations on geothermal habitats. In: Environmental Effects of Cooling Systems at Nuclear Power Plants: Proceedings series. International Atomic Energy Agency, Vienna, Austria. UNIPUB, Inc., New York. 832 pp.Google Scholar
  4. Castenholz, R. W. 1973. Ecology of blue-green algae in hot springs. In: Carr, N. G., & B. A. Whitton (Eds.), The Biology of Blue-green Algae. Univ. of Calif. Press, Berkeley. 676 pp.Google Scholar
  5. Corbet, P. S., C. Longfield, & N. W. Moore. 1960. Dragonflies. Collins, London. 260 pp.Google Scholar
  6. Durrett, C. W. & Pearson, W. D. 1975. Drift of macroinvertebrates in a channel carrying heated water from a power plant. Hydrobiologia 46: 33–43.CrossRefGoogle Scholar
  7. Gaufin, A. R., Stanford, J., Clubb, R. & Nisonger, E. 1972. Dynamics and productivity of aquatic invertebrates in a desert environment. Progress Report RM72-45, Univ. of Utah, Salt Lake City.Google Scholar
  8. Gottlieb, L. D. 1971. Gel electrophoresis: New approach to the study of evolution. Bioscience 21: 929–944.CrossRefGoogle Scholar
  9. Hochachka, P. W. & Somero, G. N. 1973. Strategies of Biochemical Adaptation. W. B. Saunders Co., Philadelphia. 358 pp.Google Scholar
  10. May, B. 1975. Electrophoretic variation in the genus Oncorhynchus: The methodology, genetic basis, and practical applications to fisheries research and management. M. S. Thesis, Univ. of Wash.Google Scholar
  11. Ridgway, G. J., Sherburne, S. U. & Lewis, R. D. 1970. Polymorphism in the esterases of Atlantic herring. Trans. Amer. Fish. Soc. 99: 147–151.CrossRefGoogle Scholar
  12. Robinson, W. H. & Turner, Jr. E. C. 1975. Insect fauna of some Virginia thermal streams. Proc. Entomol. Soc. Wash. 77: 391.Google Scholar
  13. Shaw, C. R. & Prasad, R. 1970. Starch gel electrophoresis of enzymes —a compilation of recipes. Biochem. Gen. 4: 297–320.CrossRefGoogle Scholar
  14. Somero, G. N. 1978. Temperature adaptation of enzymes: biological optimization through structure-function compromises. Ann. Rev. Ecol. Syst. 9: 1–29.CrossRefGoogle Scholar
  15. Tsukuda, H. 1975. Temperature dependancy of the relative activities of liver lactate dehydrogenase isozymes in goldfish acclimated to different temperatures. Comp. Biochem. Physiol. 5218: 343–345.Google Scholar
  16. Vincent, E. R. 1967. A comparison of riffle insect populations in the Gibbon River above and below the Geyser Basins, Yellowstone National Park. Limnol. Oceanogr. 12: 18–26.CrossRefGoogle Scholar
  17. Westfall, M. J. 1978. Odonata. In: Merrit, R. W. and K. W. Cummins (Eds.), An Introduction to the Aquatic Insects of North America. Kendall/Hunt, Dubuque, Iowa. 441 pp.Google Scholar
  18. Wiegert, R. G. & Fraleigh, P. C. 1972. Ecology of Yellowstone thermal effluent systems: net primary production and species diversity of a successional blue-green algal mat. Limnol. Oceanogr. 17: 215–228.CrossRefGoogle Scholar
  19. Wojtalik, T. A. & Waters, T. F. 1970. Some effects of heated water on the drift of two species of stream invertebrates. Trans. Amer. Fish. Soc. 4: 782–788.CrossRefGoogle Scholar

Copyright information

© Dr. W. Junk B.V. Publishers 1980

Authors and Affiliations

  • Robert J. Schott
    • 1
  • Merlyn A. Brusven
    • 1
  1. 1.Department of EntomologyUniversity of IdahoMoscow

Personalised recommendations