, Volume 125, Issue 1, pp 137–150

Seasonality/aseasonality of aquatic macrophytes in Southern Hemisphere inland waters

  • Davis S. Mitchell
  • Kevin H. Rogers
Session C: Seasonality-Aseasonality


The term aseasonality is used in this paper to describe environmental conditions which either lack annual seasonal change or have periodicities of change which are longer or shorter than the seasons. Environmental factors act on plants either as stresses or disturbances and changes in environment can signal the onset of conditions which are favourable or unfavourable to plant growth and reproduction. Plant life-histories are thus adapted to these environmental factors and respond to them with both seasonal and aseasonal periodicities, depending on their manner of occurrence and effect on the plants. A review of pertinent studies from the Southern Hemisphere shows that plants of the same life-form (submerged, floating, emergent) might differ in the types of adaptation and response to environmental conditions according to latitude but that the periodicity of response could be seasonal or aseasonal regardless of latitude. The concept of seasonality versus aseasonality is therefore misleading and an oversimplification of the variety of periodicities with which the environment acts on plant genotypes. Limnological principles of the Northern Hemisphere are applicable to aquatic macrophytes in the Southern Hemisphere but there is a particular need for research into the effects of biotic variables and water level fluctuations on aquatic plants and communities in the latter.


limnology aquatic macrophytes seasonality life-histories Southern Hemisphere 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ashton, P. J., 1982. The autecology ofAzolla filiculoides Lamarck with special reference to its occurrence in the Hendrik Verwoerd Dam Catchment Area. Ph.D. Thesis, Rhodes Univ., Grahamstown, South Africa, 312 pp.Google Scholar
  2. Bonetto, A. A., 1975. Hydrologic regime of the Paraná River and its influence on ecosystems. In A. Hasler (ed.), Coupling of land and water systems. Springer-Verlag N.Y.: 175–197.Google Scholar
  3. Brock, M. A., 1982a. Biology of the salinity tolerant genusRuppia L. in salt lakes in South Australia. I. Morphological variation within and between species and ecophysiology. Aquat. Bot. 13: 219–248.Google Scholar
  4. Brock, M. A., 1982b. Biology of the salinity tolerant genusRuppia L. in salt lakes in South Australia. II. Population ecology and reproductive biology. Aquat. Bot. 13: 249–268.Google Scholar
  5. Brock, M. A., 1983. Reproductive allocation in annual and perennial species of the submerged aquatic halophyteRuppia. J. Ecol. 71: 811–828.Google Scholar
  6. Brock, M. A. & J. A. K. Lane, 1983. The aquatic macrophyte flora of saline wetlands in Western Australia in relation to salinity and performance. Hydrobiologia 105: 63–76.Google Scholar
  7. Calow, P. & C. R. Townsend, 1981. Energy, Ecology and Evolution. In C. R. Townsend & P. Calow (eds), Physiological Ecology: An Evolutionary Approach to Resource Use. Blackwell Sci. Publ., Oxford: 3–19.Google Scholar
  8. Campbell, R. B. & B. Gardiner, 1979. A comment on possible relationships between rainfall, crop yields and the sunspot cycle. J. Aust. Inst. Agric. Sci. 45: 50–51.Google Scholar
  9. Davis, C. B. & A. G. Van Der Valk, 1983. Uptake and release of nutrients by living and decomposingTypha glauca Godr. tissues at Eagle Lake, Iowa. Aquat. Bot. 16: 75–89.Google Scholar
  10. Denny, P., 1972. Sites of nutrient absorption in aquatic macrophytes, J. Ecol. 60: 819–826.Google Scholar
  11. Dohmeier, R. A., 1984. The standing crop and production of the benthic plants and phytoplankton at Rolfes Pan. Honours Thesis, Dept Botany, Univ. Witwatersrand, Johannesburg, South Africa, 34 pp.Google Scholar
  12. Fiala, K., 1978. Seasonal development of helophyte polycormones and relationship between underground and aboveground organs. In D. Dykyjova & J. Kvet (eds), Pond Littoral Ecosystems. Springer-Verlag, Berlin: 174–181.Google Scholar
  13. Finlayson, C. M., J. Roberts, A. J. Chick & P. J. M. Sale, 1983. The biology of Australian Weeds. IITypha domingensis Pers. andTypha orientalis Presl. J. Aust. Inst. Agric. Sci. 49: 3–10.Google Scholar
  14. Grace, J. B. & R. G. Wetzel, 1981a. Habitat partitioning and competitive displacement in cattails (Typha): experimental field studies. Am. Nat. 118: 463–474.Google Scholar
  15. Grace, J. B. & R. G. Wetzel. 1981b. Phenotypic and genotypic components of growth and reproduction inTrpha latifolia: experimental studies in marshes of differing successional maturity. Ecology 62: 789–801.Google Scholar
  16. Grime, J. P., 1977. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am. Nat. 111: 1169–1184.Google Scholar
  17. Grime, J. P., 1979. Plant Strategies and Vegetation Processes. J. Wiley & Sons, Chichester, 222 pp.Google Scholar
  18. Haller, W. T., J. L. Miller & L. A. Garrod, 1976. Seasonal production and germination ofHydrilla vegetative propagules. J. Aquat. Pl. Mngmt 14: 26–29.Google Scholar
  19. Hillman, W. S., 1961. The Lemnaceae, or duckweeds. A review of the descriptive and experimental literature. Bot. Rev. 27: 221–287.Google Scholar
  20. Hopkins, C. S., J. G. Gosselink & R. T. Parrondo, 1980. Production of coastal Louisiana marsh plants calculated from phenometric techniques. Ecology 61: 1091–1098.Google Scholar
  21. Howard-Williams, C., 1973. Vegetation and Environment in the marginal areas of a tropical African lake L. Chilwa, Malawi. Ph.D. Thesis, Univ. London, 312 pp.Google Scholar
  22. Howard-Williams, C., 1978. Growth and production of aquatic macrophytes in a south temperate saline lake. Verh. int. Ver. Limnol. 20: 1153–1158.Google Scholar
  23. Howard-Williams, C. & G. G. Ganf, 1981. Shallow Waters. In J.-J. Symoens, M. J. Burgis & J. J. Gaudet (eds), The Ecology and Utilization of African Inland Waters. UNEP Reports and Proceedings Series 1, 191 pp.Google Scholar
  24. Hunt, G. S. & R. W. Lutz, 1959. Seed production in curly leaved pondweed. J. Wildl. Mngmt. 23: 405–408.Google Scholar
  25. Hutchinson, G. E., 1975. A Treatise on Limnology, Vol. III, J. Wiley & Sons, N.Y., 660 pp.Google Scholar
  26. Ikusima, I., 1965. Ecological studies on the productivity of aquatic plant communities. I. Measurement of photosynthetic activity. Bot. Mag., Tokyo 78: 202–211.Google Scholar
  27. Kadono, Y., 1984. Comparative ecology of JapanesePotamogeton: An extensive survey with special reference to growth form and life cycle. Jap. J. Ecol. 34: 161–172.Google Scholar
  28. King, J. W., 1973. Solar radiation changes and the Weather. Nature 245: 443–446.Google Scholar
  29. Klopatek, J. M., 1978. Nutrient dynamics of freshwater riverine marshes and the role of emergent macrophytes. In R. E. Good, D. F. Whigham & R. L. Simpson (eds), Freshwater Wetlands: Ecological Processes and Management Potential. Academic Press, N.Y.: 195–216.Google Scholar
  30. Lewis, H., 1962. Catastrophic selection as a factor in speciation. Evolution 16: 257–271.Google Scholar
  31. MacArthur, R. H. & E. O. Wilson, (1967). The Theory of Island Biogeography. Princeton Univ. Press, Princeton, N.J., 203 pp.Google Scholar
  32. McNaughton, S. J.. 1966. Ecotype function in theTypha community-type. Ecol. Monogr. 66: 297–325.Google Scholar
  33. McNaughton, S. J., 1975. r- and K-selection inTypha. Am. Nat. 109: 251–261.Google Scholar
  34. Menges, E. S. & D. M. Waller, 1983. Plant strategies in relation to elavation and light in floodplain herbs. Am. Nat. 122: 454–473.Google Scholar
  35. Mitchell, D. S., 1970. Autecological Studies ofSalvinia auriculata Aubl. PhD. Thesis, Univ. London, 669 pp.Google Scholar
  36. Mitchell, D. S., 1978. Freshwater plants. In M. J. A. Werger & A. C. Van Bruggen (eds), Biogeography and Ecology of southern Africa. W. Junk, The Hague: 1113–1138.Google Scholar
  37. Mitchell, D. S., T. Petr & A. B. Viner, 1980. The water-fern Salvinia molesta in the Sepik River, Papua New Guinea. Envir. Conserv. 7: 115–122.Google Scholar
  38. Mitchell, D. S. & P. A. Thomas, 1972. Ecology of water weeds in the neotropics. Technical Papers in Hydrology 12. Unesco, Paris, 50 pp.Google Scholar
  39. Mitchell, D. S. & N. M. Tur, 1975. The rate of growth ofSalvinia molesta (S. auriculata Auct.) in laboratory and natural conditions. J. appl. Ecol. 12: 213–225.Google Scholar
  40. Muenchner, W. C. L., 1936. Storage and germination of seeds of aquatic plants. Cornell Univ. Agric. Exp. Sta. Bull. No. 652.Google Scholar
  41. Neiff, J. J., 1979. Fluctuaciones de la vegetacion acuatica en ambientes del valle de inundacion del Paraná Medio. Physis 38: 41–53.Google Scholar
  42. Neiff, J. J. & A. Poi de Neiff, 1979. Estudios sucesionales en los camalotales Chaquenos y se fauna asociada. I. Etapa seralPistia stratiotes — Eichhornia crassipes. Physis 37: 29–39.Google Scholar
  43. Nichols N., 1981. Sunspot cycles and Australian rainfall. Search 12: 83–85.Google Scholar
  44. Rice, H. S., 1963. Seasons. In W. D. Hasley & L. Shores (eds), Collier's Encyclopedia, 20: 557–559.Google Scholar
  45. Rogers, K. H., 1982. Death of the Bullrush (Typha latifolia L.) in the Rietspruit. Unpubl. Rep. Dept Botany, Univ. Witwatersrand, Johannesburg, South Africa, 12 pp.Google Scholar
  46. Rogers, K. H., 1984. The Role ofPotamogeton crispus L. in the Pongolo River Floodplain Ecosystem. Ph.D. Thesis, Univ. Natal, Pietermaritzburg, South Africa, 299 pp.Google Scholar
  47. Rogers, K. H. & C. M. Breen, 1980. Growth and reproduction ofPotamogeton crispus in a South African lake. J. Ecol. 68: 561–571.Google Scholar
  48. Sale, P. J. M. & R. G. Wetzel, 1963. Growth and metabolism ofTypha species in relation to cutting treatments. Aquat. Bot. 15: 321–334.Google Scholar
  49. Sastroutomo, S. S., 1980. Environmental control of turion formation in curly leaf pondweed,Potamogeton crispus L., Physiol. Plant. 49: 261–264.Google Scholar
  50. Sculthorpe, L. D., 1967. The Biology of Aquatic Vascular Plants. Edward Arnold, Lond., 610 pp.Google Scholar
  51. Spence, D. H. N., 1982. The zonation of plants in freshwater lakes. Adv. Ecol. Res. 12: 37–126.Google Scholar
  52. Solbrig, O. T., 1981. Energy, information and plant evolution. In C. R. Townsend & P. Calow (eds), Physiological Ecology: An Evolutionary Approach to Resource Use. Blackwell Sci. Publ., Oxford: 274–299.Google Scholar
  53. Stearns, S. C., 1976. Life-history tactics: A review of ideas. Quat. Rev. biol. 51: 3–47.Google Scholar
  54. Stebbins, G. L., 1974. Flowering Plants. Evolution above the species level. Edward Arnold, London, 399 pp.Google Scholar
  55. Stuckey, R. L., 1979. Distributional history ofPotomogeton crispus (curly pondweed) in North America. Bartonia 46: 22–42.Google Scholar
  56. Stuckey, R. L., J. R. Wehrmeister & R. J. Bartolotta, 1978. Submersed aquatic vascular plants in ice-covered ponds of central Ohio. Rhodora 80: 575–580.Google Scholar
  57. Teltscherova, L. & S. Hejný, 1973. The germination of somePotamogeton species from south Bohemian fishponds. Folia Geobot. Phytotax. 8: 231–239.Google Scholar
  58. Troup, A. J., 1965. The ‘southern oscillation’. Quat. J. Roy. Meteorol. Soc. 91: 490–506.Google Scholar
  59. Tyson, P. D. & T. G. J. Dyer, 1978. The predicted above-normal rainfall of the seventies and likelihood of droughts in the eighties in South Africa. S. A. J. Sci. 74: 372–377.Google Scholar
  60. Vines, R. G., 1977. Possible relationships between rainfall, crop yields and the sunspot cycle. J. Aust. Inst. Agric. Sci. 43: 3–13.Google Scholar
  61. Waisel, Y., 1971. Seasonal activity and reproductive behaviour of some submerged hydrophytes in Israel. Hydrobiologia 12: 219–227.Google Scholar
  62. Weber, J. A. & L. D. Nooden, 1976. Environmental and hormonal control of turion formation inMyriophyllum verticillatum. Amer. J. Bot. 63: 936–944.Google Scholar
  63. Whittaker, R. H. & D. Goodman, 1979. Classifying species according to their demographic strategy. I. Population fluctuations and environmental heterogeneity. Am. Nat. 113: 185–200.Google Scholar
  64. Wood, C. A. & R. R. Lovett, 1974. Rainfall, drought and the solar cycle. Nature 251: 594–596.Google Scholar

Copyright information

© Dr W. Junk Publishers 1985

Authors and Affiliations

  • Davis S. Mitchell
    • 1
  • Kevin H. Rogers
    • 2
  1. 1.CSIROCentre for Irrigation ResearchGriffithAustralia
  2. 2.Department of BotanyUniversity of WitwatersrandJohannesburgSouth Africa

Personalised recommendations