Advertisement

Vegetatio

, Volume 81, Issue 1–2, pp 145–157 | Cite as

Classification of South Swedish Isoetid vegetation with the help of numerical methods

  • Urho Mäkirinta
Article

Abstract

Relevés of Isoetid vegetation from 60 lakes in southern Sweden have been classified with the help on numerical methods. A community system is constructed, at the variant level by clustering with the TABORD program, and at the community and subcommunity levels by reference to traditional floristic characteristics. The diagnostic species were selected with the help of PCA. Isoëtes lacustris, Lobelia dortmanna and Littorella uniflora determined the community composition together with Eleocharis acicularis. The differentation of the syntaxa along the first three ordination axes of a PCA was clear. The complex water depth factor determines clearly the position of the small syntaxa (variants) in the PCA ordination space. At high levels of similarity the relevés were grouped effectively with the TABORD program, so that the clusters are floristically homogeneous and easy to identify on the basis of floristicsociological criteria. At higher syntaxon levels a selective use of diagnostic species was made.

Keywords

Aquatic vegetation Littorelletea PCA TABORD 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott, L.A., Bisby, F.A. & Rogers, D.J. 1985. Taxonomic analysis in biology. Columbia University Press, New York.Google Scholar
  2. Albertson, N. 1950. Das grosse südliche Alvar der Insel Öland. Eine pflanzensoziologische übersicht. Svensk Bot. Tidsskr. 44: 269–331.Google Scholar
  3. Andersson, P.-A. 1988. Ordination and classification of operational geographic units in Southwest Sweden. Vegetatio 74: 95–106.Google Scholar
  4. Barkman, J.J., Moravec, J. & Rauschert, S. 1986. Code of phytosociological nomenclature. 2nd ed. Vegetatio 67: 145–195.Google Scholar
  5. Beals, E.W. 1984. Bray-Curtis ordination: an effective strategy for analysis of multivariate ecological data. Adv. Ecol. Res. 14: 1–55.Google Scholar
  6. Braun-Blanquet, J. 1964. Pflanzensoziologie, Grundlagen der Vegetationskunde. 3. Aufl. Spring Verlag. Wien, New York.Google Scholar
  7. Carleton, T.J. 1980. Non-centred component analysis of vegetation data: a comparison of orthogonal and oblique rotation. Vegetatio 42: 59–66.Google Scholar
  8. Dale, M.B. & Webb, L.J. 1975. Numerical methods for the establishment of associations. Vegetatio 30: 77–87.Google Scholar
  9. Dale, M.B. & Williams, W.I. 1978. A new method of species reduction for ecological data. Austr. J. Ecol. 3: 1–5.Google Scholar
  10. Dierssen, K. 1975. Littorelletea uniflorae Br-Bl. et Tw. 1943. J. Cramer, Vaduz.Google Scholar
  11. Downing, J.A. & Anderson, M.R. 1985. Estimating the standing biomass of aquatic macrophytes. Can. J. Fish. Aquat. Sci. 42: 1860–1869.Google Scholar
  12. Du Rietz, G.E. & Hannerz, A.G. 1939. Gefässpflanzenvegetation. In: Du Rietz, G.E., Hannerz, A.G., Lohammar, G., Santesson, R. & Wärn, M. Zur Kenntnis der Vegetation des Sees Tåkern. Acta Phytogeogr. Suec. 12: 1–41.Google Scholar
  13. Ellenberg, H. 1956. Aufgaben und Methoden der Vegetationskunde. In: Walter, H. (ed.) Einführung in die Phytologie IV. Grundlagen der Vegetationsgliederung 1: 1–136. Eugen Ulmer, Stuttgart.Google Scholar
  14. Jensén, S. 1978. Influences of transformation of cover values on classification and ordination of lake vegetation. Vegetatio 34: 19–31.Google Scholar
  15. Jensén, S. 1979. Classification of lakes in Southern Sweden on the basis of their macrophyte composition by means of multivariate methods. Vegetatio 39: 129–146.Google Scholar
  16. Jensén, S. & van der Maarel, E. 1980. Numerical approaches to lake classification with special reference to macrophyte communities. Vegetatio 42: 117–128.Google Scholar
  17. Kissling, P., Kuhn, N. & Wildi, O. 1988. The merocoenotic sample and its use in investigating floristic changes in forests. Bot. Helv. 98: 39–75.Google Scholar
  18. Klokk, T. 1981. Classification and ordination of river bank vegetation from middle and upper parts of the river Gaula, Central Norway. K. Norske Vidensk. Selsk. Skr. 1980 (2): 1–43.Google Scholar
  19. Krahulec, F., Rosén, E. & van der Maarel, E. 1986. Preliminary classification and ecology of dry grassland communities on Ölands Stora Alvar (Sweden). Nord. J. Bot 6: 797–809.Google Scholar
  20. Lohammar, G. 1938. Wasserchemie und höhere Vegetation schwedischer Seen. Symb. Bot. Ups. 3 (1): 1–252.Google Scholar
  21. Magnusson, N.H. et al. 1957. Karta över Sveriges berggrund. Pre-Quaternary rocks of Sweden. Utarbetad vid Sveriges Geologiska Undersökning 1957. Skala 1 :1000 000. Stockholm.Google Scholar
  22. Mäkirinta, U. 1978a Die pflanzensoziologische Gliederung der Wasservegetation im See Kukkia, Südfinnland. Acta Univ. Oulu A 75: 1–157.Google Scholar
  23. Mäkirinta, U. 1978b. Ein neues ökomorphologisches Lebenformensystem der aquatischen Makrophyten. Phytocoenologia 4: 446–470.Google Scholar
  24. Mäkirinta, U. 1985. Classification and ecology of the Isoetid vegetation of lakes in Southern Sweden. In: Hytteborn, H. van der Maarel, E. & Wallström, K. (eds), Research in Progress at the Institute of Ecological Botany, Uppsala University 1982–84. Medd. Växtbiol. Inst., Uppsala, 1985 (1): 55.Google Scholar
  25. Mäkirinta, U. 1986. Vegetation types and exposure on acid rocks in South Häme, South Finland. Coll. Phytosoc. 13: 469–484.Google Scholar
  26. Maristo, L. 1941. Die Seetypen Finnlands auf floristischer und vegetationsfysiognomischer Grundlage. Ann. Bot. Soc. Vanamo 6 (4): 1–55.Google Scholar
  27. Pietsch, W. 1977. Beitrag zur Soziologie und Ökologie der europäischen Littorelletea- und Utricularietea-Gesellschaften. Feddes Repert. 88: 141–245.Google Scholar
  28. Popma, J., Mucina, L., van Tongeren, O. & van der Maarel, E. 1983. On the determination of optimal levels in phytosociological classification. Vegetatio 52: 65–75.Google Scholar
  29. Raspopov, I.M. 1971. Makrofiti Onezkogo ozera. In: Raspopov, I.M. (ed.), Rastitel'nyi mir' Onezhskogo ozera: 21–87. Izd. Akad. Nauk SSSR, Leningrad.Google Scholar
  30. Roskam, E. 1971. Program ORDINA: Multidimensional ordination of observation vectors. Progr. Bull. Psych. Lab. Nijmegen 16: 1–8.Google Scholar
  31. Stålberg, N. 1939. Lake Vättern. Outlines of its natural history, especially its vegetation. Acta Phytogeogr. Suec. 11: 1–52.Google Scholar
  32. Thunmark, S. 1931. Der See Fiolen und seine Vegetation Acta Phytogeogr. Suec. 2: 1–198.Google Scholar
  33. Tüxen, R. 1937. Die Pflanzengesellschaften Nordwestdeutschlands. Mitt. Florist.-soziol. Arbeitsgem. Niedersachsen 3: 1–170.Google Scholar
  34. Vaarama, A. 1938. Wasservegetationsstudien am Grossee Kallavesi. Ann. Bot. Soc. Vanamo 13 (1) 1–318.Google Scholar
  35. van der Maarel, E. 1979. Transformation of cover-abundance values in phytosociology and its effects on community similarity. Vegetatio 39: 97–114.Google Scholar
  36. van der Maarel, E. 1980. On the interpretability of ordination diagrams. Vegetatio 42: 43–45.Google Scholar
  37. van der Maarel, E. 1982. On the manipulation and editing of phytosociological and ecological data. Vegetatio 50: 71–76.Google Scholar
  38. van der Maarel, E., Janssen, J. & Louppen, J. 1978. TABORD, a program for structuring phytosociological tables. Vegetatio 38: 143–156.Google Scholar
  39. Westhoff, V. & van der Maarel, E. 1978. the Braun-Blanquet approach. In: Whittaker, R.H. (ed.) Classification of plant communities: 287–399. Junk, The Hague.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Urho Mäkirinta
    • 1
  1. 1.Department of BotanyUniversity of OuluOuluFinland

Personalised recommendations