Advertisement

Vegetatio

, Volume 82, Issue 2, pp 163–178 | Cite as

Ten years of vegetation dynamics in two rivulets in Lower Saxony (FRG)

  • Gerhard Wiegleb
  • Wolfgang Herr
  • Dieter Todeskino
Article

Abstract

The vegetation dynamics in six permanent plots in two lowland rivulets of the Federal Republic of Germany are analyzed. The year-to-year change in species cover is displayed by means of tables. In each site there are core species (both hydrophytes and helophytes) which have been able to successfully reproduce within the sampling plots over the total observation period. There are also transient hydrophytes which regularly become washed in from the upper course, and transient helophytes growing permanently into the river from the banks.

A numerical analysis of the performance of the 12 most frequent and abundant hydrophytes in relation to various independent variables was carried out using canonical correspondence analysis. There is no directional temporal variation within the vegetation data set. The hydrochemical variables were almost constant within the observation period. Rainfall in summer has some influence via discharge and turbidity. Most of the variance in the data set is explained by the position of the sites along the rivers. Most of the residual variance can be explained by a binary disturbance variable. The processes observed can mostly be explained from life history characteristics of the dominant species, particularySparganium emersum, Ranunculus peltatus andPotamogeton natans. The spatial scale of the study site was relatively adequate. A smaller size would have produced noisy data (suggesting erratic change), while a greater size would have produced no change at all. The adequate temporal scale for observation is the comparison of the yearly maxima because of the seasonality of most of the species. An exact prediction of dominance and species composition of the following year is impossible.

Key words

Canonical correspondence analysis (CCA) Extinction Fluctuation Invasion Replacement River vegetation Spatial scale Stability Succession Temporal scale 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, M. R. & Kalff, J. 1986. Regulation of submerged aquatic plant distribution in a uniform area of a weedbed. J. Ecol. 74: 953–961.Google Scholar
  2. Brux, H., Herr, W., Todeskino, D. & Wiegleb, G. 1988. A study on floristic structure and dynamics of communities withPotamogeton alpinus Balbis in water bodies in the northern parts of the Federal Republic of Germany. Aquat. Bot. 32: 23–44.Google Scholar
  3. Brux, H., Todeskino, D. & Wiegleb, G. 1987. Growth and reproduction ofPotamogeton alpinus Balbis growing in disturbed habitats. Arch. Hydrobiol. Beih. 27: 115–127.Google Scholar
  4. Cramer, W. & Hytteborn, H. 1987. The separation of fluctuation and long-term change in vegetation dynamics of a rising seashore. Vegetatio 69: 157–167.Google Scholar
  5. Dawson, F. H. 1988. Water flow and the vegetation of running waters. In: Symoens, J. J. (ed.), Vegetation of inland waters. Handbook of vegetation science. Vol. 15/1, pp. 283–310. Nijhoff, Dordrecht.Google Scholar
  6. Dawson, F. H., Castellano, E. & Ladle, M. 1978. Concept of species succession in relation to river vegetation and management. Verh. Int. Verein. Limnol. 20: 1429–1434.Google Scholar
  7. de Lange, L. 1972. An ecological study of ditch vegetation in the Netherlands. Diss. Univ. Amsterdam.Google Scholar
  8. Delcourt, H. R., Delcourt, P. A. & Webb, T. 1983. Dynamic plant ecology: the spectrum of vegetational change in space and time. Quat. Sci. Rev. 1: 153–175.Google Scholar
  9. den Hartog, C. & van der Velde, G. 1988. Structural aspects of aquatic plant communities. In: Symoens, J. J. (ed.), Vegetation of inland waters. Handbook of vegetation science. Vol. 15/1, pp. 113–154. Nijhoff, Dordrecht.Google Scholar
  10. Deutscher Wetterdienst. 1978–1988. Wetterkarte des Deutschen Wetterdienstes. Amtsblatt des Seewetteramtes und der Wetterämter Bremen, Essen, Hannover und Schleswig. Offenbach.Google Scholar
  11. Egler, F. E. 1954. Vegetation science concepts. I. Initial floristic composition — a factor in old-field vegetation development. Vegetatio 4: 412–417.Google Scholar
  12. Fisher, S. G. 1987. Succession, scale, and hypothesis testing in streams. Can. J. Fish. Aquat. Sci. 44: 689.Google Scholar
  13. Gleason, H. A. 1926. The individualistic concept of the plant association. Bull. Torr. Bot. Club 53: 7–26.Google Scholar
  14. Johnstone, I. M. 1986. Plant invasion windows: a time-based classification of invasion potential. Biol. Rev. 61: 369–394.Google Scholar
  15. Marrs, R. H., Bravington, M. & Rawes, M. 1988. Long-term change in theJuncus squarrosus grassland at Moor House, northern England. Vegetatio 76: 179–187.Google Scholar
  16. Niedersächsiches Landesamt für Wasserwirtschaft (formerly: Niedersächsisches Wasseruntersuchungsamt). 1978–1987. Daten zur Gewässergüte der Binnergewässer Niedersachsens. Jahresberichte. Hildesheim.Google Scholar
  17. Noble, I. R. & Slatyer, R. O. 1980. The use of vital attributes to predict successional changes in plant communities subjected to recurrent disturbance. Vegetatio 43: 5–21.Google Scholar
  18. Palmer, M. W. 1988. Fractal geometry: a tool for describing spatial patterns of plant communities. Vegetatio 75: 91–102.Google Scholar
  19. Roerslett, B. 1987. A generalized spatial niche model for aquatic macrophytes. Aquat. Bot. 29: 63–82.Google Scholar
  20. Shmida, A. & Ellner, S. 1984. Coexistence of plant species with similar niches. Vegetatio 58: 29–55.Google Scholar
  21. Shmida, A. & Wilson, M. W. 1985. Biological determinants of species diversity. J. Biogeogr. 12: 1–20.Google Scholar
  22. Statzner, B. & Higler, B. 1985. Questions and comments on the river continuum concept. Can. J. Fish. Aquat. Sci. 42: 1038–1044.Google Scholar
  23. Strasburger, K. 1981. Wasserpflanzengesellschaften im unteren Allertal. Diss. TU Hannover.Google Scholar
  24. ter Braak, C. J. F. 1987. The analysis of vegetation-environment relationship by canonical correspondence analysis. Vegetatio 69: 69–77.Google Scholar
  25. ter Braak, C. J. F. 1988a. CANOCO — an extension of DECORANA to analyze species-environment relationships. Vegetatio 75: 159–160.Google Scholar
  26. ter Braak, C. J. F. 1988b. Partial canonical correspondence analysis. In: Bock, H. H. (ed.), Classification and related methods of data analysis, pp. 551–568. North-Holland Publishing Co., Amsterdam.Google Scholar
  27. Usher, M. B. 1979. Markovian approaches to ecological succession. J. Anim. Ecol. 48: 413–426.Google Scholar
  28. van der Maarel, E. 1988. Vegetation dynamics: patterns in time and space. Vegetatio 77: 7–19.Google Scholar
  29. van der Valk, A. G. 1981. Succession in wetlands: a Gleasonian approach. Ecology 62: 688–696.Google Scholar
  30. van Dorp, D., Boot, R. & van der Maarel, E. 1985. Vegetation succession of the dunes near Oostvoorne, the Netherlands, since 1934, interpreted from air photographs and vegetation maps. Vegetatio 58: 123–136.Google Scholar
  31. van Hulst, R. 1979. On the dynamics of vegetation: Markov chains as models of succession. Vegetatio 40: 111–121.Google Scholar
  32. Wiegleb, G. 1979. Die Verbreitung vonElodea nuttallii (Planch.) St. John im westlichen Niedersachsen. Drosera 1979: 9–14.Google Scholar
  33. Wiegleb, G. 1983a. Recherches méthodologiques sur les groupements végétaux des eaux courantes. Coll. Phytosoc. 10 (Végétations Aquatiques): 69–83.Google Scholar
  34. Wiegleb, G. 1983b. A phytosociological study of the macrophytic vegetation of running waters in western Lower Saxony (FRG). Aquat. Bot. 17: 251–274.Google Scholar
  35. Wiegleb, G. 1984. A study of the habitat conditions of the macrophytic vegetation in selected river systems in western Lower Saxony (Federal Republic of Germany). Aquat. Bot. 18: 313–352.Google Scholar
  36. Wiegleb, G. 1988. Analysis of flora and vegetation in rivers - concepts and applications. In: Symoens, J. J. (ed.), Handbook of Vegetation Science, Vol. 15/1. Application to aquatic vegetation and water management, pp. 311–330. Nijhoff, Dordrecht.Google Scholar
  37. Wiegleb, G. & Brux, H. 1989. Comparison of life-history characters of broad-leaved species of the genusPotamogeton L. I. General characterization of morphology and reproductive strategies. Aquat. Bot. in press.Google Scholar
  38. Wiegleb, G. & Herr, W. 1983. Taxonomie und Verbreitung vonRanunculus SubgenusBatrachium in niedersächsischen Fließgewässern unter besonderer Berücksichtigung desRanunculus penicillatus-Komplexes. Göttinger Florist. Rundbr. 17: 101–150.Google Scholar
  39. Wiegleb, G. & Todeskino, D. 1983. Habitat conditions ofPotamogeton alpinus Balbis stands and relations to the plants biological characters. Proc. Int. Symp. Aquat. Macrophytes, Nijmegen 1983, pp. 311–316.Google Scholar
  40. Wiegleb, G. & Todeskino, D. 1985. Der biologische Lebenszyklus vonPotamogeton alpinus und dessen Bedeutung für das Vorkommen der Art. Verh. Ges. Ökol. 13: 191–198.Google Scholar
  41. Zander, B. & Wiegleb, G. 1987. Biosystematische Untersuchungen an Populationen vonRanunculus subgenusBatrachium in Nord-westdeutschland. Bot. Jahrb. Syst. 109: 81–130.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Gerhard Wiegleb
    • 1
  • Wolfgang Herr
    • 2
  • Dieter Todeskino
    • 2
  1. 1.Fachbereich 7 BiologieUniversität OldenburgOldenburgFRG
  2. 2.Institut für Angewandte Botanik und Landschaftsökologie (IBL)OldenburgFRG

Personalised recommendations