, Volume 65, Issue 2, pp 67–76 | Cite as

Sand movement as a factor in the distribution of plant communities in a coastal dune system

  • Patricia Moreno-Casasola


The semi-mobile coastal sand dune system El Morro de La Mancha at the Gulf of Mexico was studied phytosociologically and ecologically. The floristic gradient resulting from a relevé ordination was correlated with the amount of sand movement occurring on the site of each relevé, and the topography of the dune.

The gradient manifested in the ordination represents the transition from the more mobile parts of the dunes to the more stable ones. It can be interpreted as a progressive stabilization during which sand movement decreases.Chamaecrista chamaecristoides,Palafoxia lindenii andCroton punctatus were found to inhabit the sites with considerable sand movement. The first species tolerates both erosion and accretion; the other two were only found in sites of sand accumulation. On the other hand grasslands and scrub were found on sites without any sand movement. Sand movement should be considered among the most important factors that affect the distribution of communities in sand dunes.


Coastal Community distribution Gulf of Mexico Mexico Multivariate methods Ordination Sand dunes Sand movement 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, C. & Taylor, K., 1979. Some factors affecting the growth of two populations of Festuca rubra var. arenaria on the dunes of Blakeney Point, Norfolk. In: R. L., Jefferies & A. J., Davy (eds.), Ecological Processes in Coastal Environments. Blackwell Scientific Publications, Oxford, pp. 129–144.Google Scholar
  2. Ayyad, M. A., 1973. Vegetation and environment of the western Mediterranean coastal land of Egypt. I. The habitat of the sand dunes. J. Ecol. 61: 509–523.Google Scholar
  3. Barbour, M. G., Jong, T. de & Pavlik, B. M., 1984. Marine beach and dune plant communities. In: Chabot B. & Mooney H. (eds.), Physiological plant ecology of North American plant communities. Chapman and Hall. In press.Google Scholar
  4. Crawford, R. M. M. & Wishart, D., 1966. A multivariate analysis of dune slack vegetation in relation to coastal accretion at Tentsmuir Fife. J. Ecol. 54: 729–743.Google Scholar
  5. Chandapillai, M. M., 1970. Variation in fixed dune vegetation at Newborough Warren, Anglesey. J. Ecol. 58: 193–201.Google Scholar
  6. Chapman, V. J., 1976. Coastal Vegetation. Pergamon Press, Oxford.Google Scholar
  7. Cowles, H. C., 1911. A fifteen year study of advancing sand dunes. Rep. Be. Ass. 1911, 565.Google Scholar
  8. Dahl, B. E., Fall, B. A., Lohse, A. & Appan, S. G., 1975. Construction and stabilization of coastal foredunes with vegetation: Padre Island, Texas. U.S. Army Corps of Engineers. Coastal Engineering Research Center, Fort Belvoir, Virginia.Google Scholar
  9. Dieren, J. W. van, 1934. Organogene Dünenbildung. Thesis, Amsterdam: 304 pp.Google Scholar
  10. Disraeli, D. J., 1984. The effect of sand deposition on the growth and morphology of Ammophila breviligulata. J. Ecol. 72: 145–154.Google Scholar
  11. Doing, H., 1983. Geomorphology and soils of dunes. In: K. S. Dijkema & W. J. Wolff (eds.), Flora and vegetation of the Wadden Sea islands and coastal areas. Stichting Veth, Leiden: pp. 12–26.Google Scholar
  12. Eldred, R. A. & Maun, M. A., 1982. A multivariate approach to the problem of decline in vigour of Ammophila. Can. J. Bot. 60: 1371–1380.Google Scholar
  13. Garcia Novo, F., Ramirez, D. L. & Torres, M. A., 1975. El sistema de dunas de Doñana. Naturalia Hispanica No. 5. ICONA, Minsterio de Agricultura, Madrid.Google Scholar
  14. Gates, F. C., 1950. The disappearing Sleeping Bear Dune. Ecol. 31: 386–392.Google Scholar
  15. Gemmell, A. R., Greig-Smith, P. & Gimingham, C. H., 1953. A note on the behaviour of Ammophila arenaria (L.) Link. in relation to sand-dune formation. Trans. Proc. Bot. Soc. Edinb. 36: 132–136.Google Scholar
  16. Greig-Smith, P., 1964. Quantitative plant ecology. Blackwell Scientific Publications. Oxford. 3rd ed.Google Scholar
  17. Halwagy, R., 1963. Studies on the succession of vegetation on some islands and banks in the Nile near Khartoum, Sudan. Vegetatio 11: 217–234.Google Scholar
  18. Hill, M. O., 1979. DECORANA: a fortran program for detrended correspondence analysis and reciprocal averaging. Ecology and Systematics, Cornell University, Ithaca.Google Scholar
  19. Hill, M. O. & GauchJr., H. G., 1981. Detrended correspondence analysis: an improved ordination technique. Vegetatio 42: 47–58.Google Scholar
  20. Hope-Simpson, J. F. & Jefferies, R. L., 1966. Observations relating to vigour and debility in marram grass (Ammophila arenaria (L.) Link). J. Ecol. 54: 271–274.Google Scholar
  21. Hobbs, R. H. & Grace, J., 1981. A study of pattern and process in coastal vegetation using principal components analysis. Vegetatio 44: 137–154.Google Scholar
  22. Holton, B.Jr. & Johnson, A. F., 1979. Dune scrub communities and their correlation with environmental factors at Point Reyes National Seashore, California. J. Biogeog. 6: 317–328.Google Scholar
  23. Huiskes, A. H. L. & Harper, J. L., 1979. The demography of leaves and tillers of Ammophila arenaria in a dune sere. Oecol. Plant. 14: 435–446.Google Scholar
  24. Johnson, A. F., 1978. Some aspects of the autecology of Abronia maritima Nutt. Wats. Ph.D. dissertation. Univ. of California, Davis.Google Scholar
  25. Kershaw, K. A., 1959. An investigation of the structure of a grassland community. III. Discussion and conclusions. J. Ecol. 47: 44–53.Google Scholar
  26. Krajnyk, I. & Maun, M. A., 1981. Vegetative reproduction in the juvenile phase of Ammophila breviligulata. Can. J. Bot. 59: 883–892.Google Scholar
  27. Laing, C. C., 1958. Studies in the ecology of Ammophila breviligulata. I. Seedling survival and its relation to population increase and dispersal. Bot. Gaz. 119: 208–216.Google Scholar
  28. Lee, J. A. & Ignaciuk, R., 1985. The physiological ecology of strand line plants. Vegetatio 62: 319–326.Google Scholar
  29. Marshall, J. K., 1965. Corynephorus canescens (L.) P. Beauv. as a model for the Ammophila problem. J. Ecol. 53: 447–463.Google Scholar
  30. Maun, M. A., 1984. Colonizing ability of Ammophila breviligulata through vegetative regeneration. J. Ecol. 72: 565–574.Google Scholar
  31. Maun, M. A. & Lapierre, J., 1984. The effects of burial by sand on Ammophila breviligulata. J. Ecol. 72: 827–839.Google Scholar
  32. Moreno-Casasola, P., 1982. Ecologia de la vegetacion de dunas costeras: factores fisicos. Biotica 7: 577–602.Google Scholar
  33. Moreno-Casasola, P., van der, Maarel, E., Castillo, S., Huesca, M. L. & Pisanty, I., 1982. Ecologia de la vegetacion de dunas costeras: estructura y composicion en el Morro de la Mancha, Ver. I. Biotica 7: 491–526.Google Scholar
  34. Nobuhara, H., 1967. Analysis of coastal vegetation on sandy shore by biological types in Japan. Jap. J. Bot. 19: 325–351.Google Scholar
  35. Olson, J. S., 1958. Lake Michigan dune development. 2. Plants as agents and tools in geomorphology. J. Geol. 66: 345–351.Google Scholar
  36. Onyekwelu, S. S. C., 1972. The vegetation of dune slacks at Newborough Warren. I. Ordination of the vegetation. J. Ecol. 60: 887–898.Google Scholar
  37. Pammenter, N. W., 1983. Some aspects of the ecophysiology of Scaevola thunbergii, a subtropical coastal dune pioneer. In: A., McLachlan & T., Erasmus (eds.), Sandy beaches as ecosystems. Developments in Hydrobiology 19. Dr. W. Junk Publishers, The Hague, pp. 675–685.Google Scholar
  38. Platt, H., 1985. Growth and life history of railroad vines (Ipomoea stolonifera, Ipomoea pes-caprae, Convolvulaceae) along accreting shorelines of a barrier island. Manuscript.Google Scholar
  39. Purer, E., 1936. Studies of certain coastal sand dune plants of southern California. Ecol. Monogr. 6: 1–87.Google Scholar
  40. Ranwell, D., 1958. Movement of vegetated sand dunes at Newborough Warren, Anglesey. J. Ecol. 46: 83–100.Google Scholar
  41. Ranwell, D., 1960. Newborough Warren, Anglesey. II. Plant associes and succession cycles of the sand dune and dune slack vegetation. J. Ecol. 48: 117–141.Google Scholar
  42. Ranwell, D., 1972. Ecology of salt marshes and sand dunes. Chapman and Hall, London.Google Scholar
  43. Roskam, E., 1971. Programme ORDINA: multidimensional ordination of observation vectors. Programme Bull. 16 Psychology Lab., Nijmegen.Google Scholar
  44. Salisbury, E., 1952. Downs and dunes, Their plant life and its environment. G. Bell & Sons, Ltd. London.Google Scholar
  45. SAS Institute Inc. User's Guide: Statistics. 1982 ed. Cary, N. Carolina.Google Scholar
  46. Steers, J. A., 1939. Sand and shingle formations in Cardigan Bay. Geogr. J. 94: 209–227.Google Scholar
  47. Van der, Maarel, E., 1979. Environmental management of coastal dunes in the Netherlands. In: R. L., Jefferies & A. J., Davy (eds.), Ecological Processes in Coastal Environments. Blackwell Scientific Publications, Oxford, pp. 543–570.Google Scholar
  48. Van der, Maarel, E. & Leertouwer, J., 1967. Variation in vegetation and species diversity along a local environmental gradient. Acta Bot. Neerl. 16: 211–221.Google Scholar
  49. Van der, Maarel, E., Janssen, J. G. & Louppen, J. M. W., 1978. TABORD, a program for structuring phytosociological tables. Vegetatio 38: 143–156.Google Scholar
  50. Wagner, R. H., 1964. The ecology of Uniola paniculata L. in the dune-strand habitat of North Carolina. Ecol. Monogr. 34: 79–96.Google Scholar
  51. Wallén, B., 1980. Changes in structure and function of Ammophila during primary succession. Oikos 34: 227–238.Google Scholar
  52. Westhoff, V. & van der, Maarel, E., 1978. The Braun Blanquet Approach. In: R. H., Whittaker (ed.), Classification of plant communities. Junk. The Hague. pp. 287–399.Google Scholar
  53. Willis, A. J., Folkes, B. F., Hope-Simpson, J. F. & Yemm, E. W., 1959. Braunton Burrows: the dune system and its vegetation. II. J. Ecol. 47: 249–288.Google Scholar
  54. Yano, N., 1962. The subterranean organ of sand dune plants in Japan. J. Sci. Hiroshima Univ. Ser. B. Div. 2 (Botany) 9: 139–184.Google Scholar

Copyright information

© Dr W. Junk Publishers 1986

Authors and Affiliations

  • Patricia Moreno-Casasola
    • 1
  1. 1.Institute of Ecological BotanyUniversity of UppsalaUppsalaSweden

Personalised recommendations