Vegetatio

, Volume 62, Issue 1–3, pp 499–521

Ecophysiological adaptations of coastal halophytes from foredunes and salt marshes

  • J. Rozema
  • P. Bijwaard
  • G. Prast
  • R. Broekman
Part 6 Concluding Paper

Abstract

Ecophysiological strategies of coastal halophytes from foredunes and salt marshes are discussed. A comparison is made of the factors that limit growth in salt marshes and sand dunes. In salt marshes, zonation and succession are primarily governed by variation in soil salinity, which strongly depends on inundation with seawater. Results are described of experiments which aim at separating salinity and inundation effects on growth, osmotic and mineral relations in a comparison of salt-marsh halophytes. The growth response of plants cannot simply be correlated (and causally explained) with the concentration of Na, Cl, and K in the tissues. Also, the compatible osmotic solutes proline and methylated quaternary ammonium compounds may accumulate both in species with a positive response to increased salinity and in species with a growth reduction under seawater inundation. More likely inadequate adaptation of the plants water potential with these components is partly the cause of retarded growth. Disfunctioning of the plant in this respect may be at three levels: (a) total water potential of the plant, (b) (loss) of turgor pressure potential; (c) regulation at the cellular level.

The ecological importance of some factors in seawater other than sodium chloride is considered. In coastal sand dunes airborne rather than soil salinity limits plant growth, together with the effects of abrasion, sand accretion, drought and the poor nutrient status of the dune sand. Adaptations of sand-dune species to these factors may consist of: large seeds with storage tissue germinating in the dark and seedling growth enough to emerge through the accreted sand. Aerial parts must be resistant to mechanical damage (high wind speed and abrasion), possibly by a sclerophyllous and tough structure. Efficient nutrient uptake, translocation and retranslocation seem to help survive sand-dune species in a nutrient-poor rooting medium.

Keywords

Coastal dune Halophyte Osmotic adaptation Salt marsh Salt spray Sand accretion Seawater inundation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, D. A., 1973. Factors influencing vascular plant zonation in North Carolina salt marshes. Ecology 44: 445–456.Google Scholar
  2. Ahmad, I. & Wainwright, S. J., 1976. Ecotype differences in leaf surface properties of Agrostis stolonifera from salt marsh, spray zone and inland habitats. New Phytol. 76: 361–366.Google Scholar
  3. Ahmad, I., Larher, F. & Stewart, G. R., 1979. Sorbitol, a compatible osmotic solute in Plantago maritima. New Phytol. 82: 671–678.Google Scholar
  4. Albert, R., 1982. Halophyten. In: H. Kinzel (ed.), Pflanzenökologie und Mineralstoffwechsel. Ulmer, Stuttgart.Google Scholar
  5. Albert, R. & Popp, M., 1977. Chemical composition of halophytes from the Neusiedler lake region in Austria. Oecologia (Berl.) 27: 157–170.Google Scholar
  6. Armstrong, W., 1975. Waterlogged soils. In: J. R. Etherington, (ed.) Environment and Plant Ecology. pp. 181–218. Wiley, New York.Google Scholar
  7. Bakker, T. W. M., Klijn, J. A., Zadelhoff, F. J. van, 1979. Duinen en duinvalleien. Pudoc, Wageningen. 201 pp.Google Scholar
  8. Barbour, M. G. & Jong, Th. M. de, 1977. Response of West Coast Beach taxa to salt spray, seawater inundation, and soil salinity. Bull. Torr. Bot. Club 104: 29–34.Google Scholar
  9. Barnes, R. S. K. (ed.), 1977. The Coastline. John Wiley, Chichester.Google Scholar
  10. Beeftink, W. G., 1977. The coastal salt marshes of western and northern Europe: an ecological and phytosociological approach. In: V. J. Chapman (ed.): Wet coastal ecosystems. pp. 109–155.Google Scholar
  11. Beer, S., Shomer-Ilan, A. & Waisel, Y., 1975. Salt-stimulated Phosphoenol-pyruvate carboxylase in Cakile maritima. Physiol. Plant. 34: 293–295.Google Scholar
  12. Bienfait, H. F. & Mark, F. van der, 1983. Phytoferritin and its role in iron metabolism. In: Metals and micronutrients: uptake and utilization by plants (Pierpoint ed.) Academic Press, New York.Google Scholar
  13. Benecke, W., 1930. Zur Biologie der Strand- und Dünenflora, I. Vergleichende Versuche über die Salztoleranz von Ammophila arenaria Link, Elymus arenarius L. und Agriopyrum junceum L. Ber. Dtsche Bot. Ges. 148: 127–139.Google Scholar
  14. Boorman, L. A., 1968. Some aspects of the reproductive biology of Limonium vulgare Mill. and L. humile Mill. Ann. Bot. 32: 803–824.Google Scholar
  15. Borowitzka, L., 1981. Solute accumulation and regulation of cell water activity. In: L. G. Paleg & D. Aspinall (eds.). Physiology and biochemistry of drought resistance in plants. Academic Press, Sydney pp. 97–104.Google Scholar
  16. Breckle, S. W., 1975. Zur Okologie und zu den Mineralstoffver-hältnissen absalzender und nicht absalzender Xerohalophyten. Thesis Bonn, pp. 92–96.Google Scholar
  17. Brümmer, G., 1974. Redoxpotentiale und Redoxprozesse von Mangan-, Eisen- und Schwefel Verbindungen in hydromorphen Boden und Sedimenten. Geoderma 12: 207–222.Google Scholar
  18. Buth, G. J. C., 1985. Decomposition of three halophytes in an Eastern Scheldt salt marsh. In: W. G. Beeftink, J. Rozema & A. H. L. Huiskes (eds.), Ecology of coastal vegetation. Vegetatio 61/62: 337–356.Google Scholar
  19. Cavalieri, A. J. & Huang, A. H. C., 1981. Accumulation of proline and glycinebetaine in Spartina alterniflora Loisel in response to NaCl and nitrogen in the marsh. Oecologia (Berl.) 49: 224–228.Google Scholar
  20. Chapin III F. S., 1980. The mineral nutrition of wild plants. Ann. Rev. Ecol. Syst. 11: 233–260.Google Scholar
  21. Chapman, V. J., 1974. Salt marshes and salt deserts of the world. In: R. J. Reimold & W. Queen (eds.), Ecology of halophytes. pp. 3–22. Academic Press, London.Google Scholar
  22. Cooper, A., 1982. The effects of salinity and waterlogging on the growth and cation uptake of salt marsh plants. New Phytol. 90: 263–275.Google Scholar
  23. Crawford, R. M. M., 1978. Metabolic adaptations to anoxia. In: D. D. Hook & R. M. M. Crawford (eds.), Anaerobic plant growth. pp.: 119–136. Ann Arbor Science, Ann Arbor.Google Scholar
  24. Dickson, D. M. J., Wyn Jones, R. G. & Davenport, J., 1980. Steady state osmotic adaptation in Ulva lactuca. Planta 150: 158–165.Google Scholar
  25. Dickson, D. M. J., Wyn Jones, R. G. & Davenport, J., 1982. Osmotic adaptation in Ulva lactuca under fluctuating salinity regimes. Planta 155: 409–415.Google Scholar
  26. Edwards, R. S. & Claxton, S. M., 1964. The distribution of air-borne salt of marine origin in the Aberystwyth area. J. Appl. Ecol. 1: 213–263.Google Scholar
  27. Ernst, W. H. O., 1981. Ecological implications of fruit variability in Phleum arenarium L., an annual dune grass. Flora 171: 387–398.Google Scholar
  28. Ernst, W. H. O., 1983a. Anpassungsstrategien einjähriger Dünenpflanzen. Verhandl. Ges. Ökologie II (Mainz 1981) X: 485–495.Google Scholar
  29. Ernst, W. H. O., 1983b. Element nutrition of two contrasted dune annuals. J. Ecol. 71: 197–210.Google Scholar
  30. Flowers, T. J., Troke, P. F. & Yeo, A. R., 1977. The mechanism of salt tolerance in halophytes. Ann. Rev. Plant Physiol. 28: 89–121.Google Scholar
  31. Goldberg, E. D., 1963. I. Chemistry. In: The sea. Ideas and observations on progress in the study of the seas. pp. 4–5. John Wiley Interscience. New York.Google Scholar
  32. Gorham, J., Hughes, L. & Wyn Jones, R. G., 1981. Low-molecular-weight carbohydrates in some salt-stressed plants. Physiol. Plant. 53: 27–33.Google Scholar
  33. Grace, J., 1977. Plant responses to wind. Academic Press, London.Google Scholar
  34. Greenway, H. & Munns, R., 1980. Mechanisms of salt tolerance in nonhalophytes. Ann. Rev. Plant Physiol. 31: 149–190.Google Scholar
  35. Groenendijk, A. M., 1985. Ecological consequences of tidal management for the salt marsh vegetation in: W. G. Beeftink, J. Rozema, A. H. L. Huiskes (eds.), Ecology of Coastal Vegetation. Junk, The Hague. Vegetatio 59/60.Google Scholar
  36. Gutknecht, J. & Dainty, J., 1969. Ionic relationships of marine algae. Oceanogr. Mar. Biol. Ann. Rev. 6: 163–200.Google Scholar
  37. Havill, D. E., Ingold, A. & Pearson, J., 1985. Sulphide tolerance in coastal halophytes. In: W. G. Beeftink, J. Rozema & A. H. L. Huiskes (eds.), Ecology of coastal vegetation. Junk, The Hague. Vegetatio 59/60.Google Scholar
  38. Heukels, H. & Ooststroom, S. J. van, 1977. Flora van Nederland. Wolters Noordhoff, Groningen.Google Scholar
  39. Hodson, M. J., Smith, M. M., Wainwright & S. J. Öpik, H., 1981. Cation cotolerance in a salt-tolerant clone of Agrostis stolonifera L. New Phytol. 90: 253–2.Google Scholar
  40. Hook, D. D. & Crawford, R. M. M., 1978. Anaerobic plant growth. Ann Arbor Science, Ann Arbor.Google Scholar
  41. Huiskes, A. H. L., 1979. Ammophila arenaria (L.) Link. Biological Flora of the British Isles. J. Ecol. 67: 363–382.Google Scholar
  42. Humphreys, M. O., 1982. The genetic basis of tolerance to salt spray in populations of Festuca rubra L. New Phytol. 91: 287–296.Google Scholar
  43. Ignaciuk, R. & Lee, J. A., 1980. The germination of four annual strand-line species. New Phytol. 84: 581–591.Google Scholar
  44. Ingold, A., 1982. The effects of sulphide toxicity on the distribution of higher plant species in salt marshes. Ph. D. Thesis. Un. of London. 132 pp.Google Scholar
  45. Jefferies, R. L., Davy, A. J. & Rudmik, T., 1979. The growth strategies of coastal halophytes. In: R. L. Jefferies & A. J. Davy (eds.), Ecological processes in coastal environments. pp. 243–268. Blackwell, Oxford.Google Scholar
  46. Jefferies, R. L., 1980. The role of organic solutes in osmo-regulation in halophytes in halophytic higher plants. In: D. W. Rains, R. C. Valentine & A. Hollaender (eds.), Genetic engineering of osmoregulation. pp. 136–154. Plenum, New York.Google Scholar
  47. Joenje, W., 1978. Plant colonization and succession on embanked sand flats. A case study in the Lauwerszeepolder, The Netherlands. Ph.D. Thesis. University Groningen, 160 pp.Google Scholar
  48. John, C. P., Limpinuntana, V. & Greenway, H., 1977. Interaction of salinity and anaerobiosis in barley and rice. J. Exp. Bot. 28: 127–132 (1977).Google Scholar
  49. Jong, T. M. de, 1979. Water and salinity relations of Californian beach species. J. Ecol. 67: 647–663.Google Scholar
  50. Lee, J. A. & Ignaciuk, 1985. The nitrogen nutrition of strandline plants. In: W. G. Beeftink, J. Rozema & A. H. L. Huiskes (eds.), Ecology of Coastal Vegetation. Vegetatio 61/62: 319–326.Google Scholar
  51. Lewis, D. H., 1980. Boron, lignification and the origin of vascular landplants. A unified hypothesis. New Phytol 84: 209–229.Google Scholar
  52. Liphschitz, N. & Waisel, Y., 1982. Adaptations of plants to saline environments: salt excretion and glandular structure. In: Contributions to the ecology of halophytes (D. N. Sen & K. S. Rajpurohit, eds.) Junk, The Hague. pp. 197–214.Google Scholar
  53. Maarel, E. van der, 1962. Aantekeningen over Cochlearia officinalis L. s.l., Herbariumonderzoek van Cochlearia officinalis L. en C. anglica L. Gorteria 1: 75–79.Google Scholar
  54. Maarel, E. van der, Cock, N. de & Wildt, E. de, 1985. Population-dynamics of some major woody species in relation to long-term succession on the dunes of Voorne, The Netherlands. In: W. G. Beeftink, J. Rozema & A. H. L. Huiskes (eds.), Ecology of Coastal Vegetation. Vegetatio 61/62: 209–220.Google Scholar
  55. Maarel, E. van der, 1979. Environmental management of coastal dunes in the Netherlands. In: R. L. Jefferies & A. J. Davy (eds.), Ecological Processes in Coastal Environments. pp. 543–570. Blackwell, Oxford.Google Scholar
  56. Mahall, B. E. & Park, R. B., 1976. The ecotone between Spartina foliosa Trin. and Salicornia virginica L. in salt marshes of Northern San Francisco Bay. II. Soil water and salinity. J. Ecol. 64: 793–809.Google Scholar
  57. McClendon, J. H., 1981. The balance of forces generated by the water potential in the cell-wall-matrix-model. Amer. J. Bot., 68: 1263–1268.Google Scholar
  58. Milburn, J. A., 1979. Water Flow in Plants. Longman London.Google Scholar
  59. Paleg, L. G. & Aspinall, D., 1981. Physiology and biochemistry of drought resistance in plants. Academic Press. Sydney.Google Scholar
  60. Ponnamperuma, F. N., 1972. The chemistry of submerged soils. Advan. Agron. 24: 29–96.Google Scholar
  61. Pugh, G. J. F., 1979. The distribution of fungi in coastal regions. In: R. L. Jefferies & A. J. Davy (eds.), Ecological processes in coastal environments. pp. 415–428. Blackwell, Oxford.Google Scholar
  62. Ranwell, D. S., 1972. Ecology of salt-marshes and sand-dunes.Google Scholar
  63. Raven, J. A., 1980. Short and long distance transport of boric acid in plants. New Phytol. 84: 231–249.Google Scholar
  64. Rhebergen, H. & Nelissen, H. J. M., 1985. Population genetics of three Festuca rubra ecotypes. In: W. G. Beeftink, J. Rozema & A. H. L. Huiskes (eds.), Ecology of coastal vegetation. Junk, The Hague.Google Scholar
  65. Rihan, J. & Gray, A. J., 1985. The ecology of the Hybrid Marram Grass x Calammophila baltica (Flugge) Brand (=x Ammocalagrostis baltica. (Schrad.) P. Fourn) in Britain. In: W. G. Beeftink, J. Rozema & A. H. L. Huiskes (eds.), Ecology of coastal vegetation. Junk, The Hague. Vegetatio 59/60.Google Scholar
  66. Roozen, A. J. M. & Westhoff, 1985. A study on long-term salt-marsh succession using permanent quadrats. In: W. G. Beeftink, J. Rozema & A. H. L. Huiskes (eds.), Ecology of coastal vegetation. Vegetatio 61/62: 23–32.Google Scholar
  67. Rozema, J. & Blom, B. N., 1977. Effects of salinity and inundation on the growth of Agrostis stolonifera and Juncus gerardii. J. Ecol. 65: 213–222.Google Scholar
  68. Rozema, J., 1978. On the ecology of some halophytes from a beach plain in the Netherlands. Ph.D. Thesis, Free University, Amsterdam, 191 pp.Google Scholar
  69. Rozema, J. Buizer, D. A. G. & Fabritius, H., 1978a. Population dynamics of Glaux maritima and ecophysiological adaptations to salinity and inundation. Oikos, 30: 539–548.Google Scholar
  70. Rozema, J., Rozema-Dijst, E., Freysen, A. H. J. & Huber, J. J. L., 1978b. Population differentiation within Festuca rubra L. with regard to soil salinity and soil water. Oecologia (Berl.) 34: 329–341.Google Scholar
  71. Rozema, J., Bijl, F., Dueck, T. & Wesselman, H., 1982. Salt-spray stimulated growth in strand-line species. Physiol. Plant. 56: 204–210.Google Scholar
  72. Rozema, J. Dueck, T., Wesselman, H., Bijl, F., 1983a. Nitrogen dependent growth simulation by salt. Acta Oecologia Plant 4: 41–52.Google Scholar
  73. Rozema, J., Maanen, Y. van, Vugts, H. & Leusink, A., 1983b. Airborne and soilborne salinity and the distribution of coastal and inland species of the genus Elytrigia. Acta Bot. Neerl. 32: 447–456.Google Scholar
  74. Rozema, J., Luppes, E. & Broekman, R., 1985. Differential response of salt marsh species to variation of iron and manganese. In: W. G. Beeftink, J. Rozema & A. H. L. Huiskes (eds.). Ecology of Coastal Vegetation. Vegetatio 61/62: 293–302.Google Scholar
  75. Sanders, F. E., Mosse, B. & Tinker, P. B., 1975. Endomycorrhizae, Acad. Press, London.Google Scholar
  76. Schat, H., 1982. On the ecology of some Dutch dune slack plants. Ph.D. Thesis, Free University, Amsterdam. 128 pp.Google Scholar
  77. Singer, C. E. & Havill, D. C., 1985. Manganese as an ecological factor in salt marshes. In: Ecology of Coastal Vegetation (W. G. Beeftink, J. Rozema & A. H. L. Huiskes eds). Vegetatio 61/62: 287–292.Google Scholar
  78. Smirnoff, N. & Stewart, G. R., 1985. Stress metabolites and their role in coastal plants. In: Ecology of Coastal Vegetation (W. G. Beeftink, J. Rozema & A. H. L. Huiskes eds). Vegetatio 61/62: 237–278.Google Scholar
  79. Stewart, G. R., Larher, F., Ahmad, I. & Lee, J. A., 1979. Nitrogen metabolism and salt tolerance in higher plants halophytes. In: R. L. Jefferies & A. J. Davy (eds.), Ecological processes in coastal environments: pp. 229–241. Blackwell, Oxford.Google Scholar
  80. Storey, R., Ahmad, N. & Wyn Jones, R. G., 1977. Taxonomic and ecological aspects of the distribution of glycinebetaine and related compounds in plants. Oecologia (Berl.) 27: 319–322.Google Scholar
  81. Valk, A. G. van der, 1974. Mineral cycling in coastal foredune plant communities in Cape Hatteras National Seashore. Ecology 55: 1349–1358.Google Scholar
  82. Wainwright, S. J., 1980. Plants in relation to salinity. Adv. Bot. 8: 221–259.Google Scholar
  83. Waisel, Y., 1972. Biology of halophytes. Academic Press, New York.Google Scholar
  84. Watkinson, A. R. & Davy, A. J., 1985. Population biology of salt marsh and sand dune annuals. In: Ecology of Coastal Vegetation (W. G. Beeftink, J. Rozema & A. H. L. Huiskes eds.). Vegetatio 61/62: 487–498.Google Scholar
  85. Westhoff, V., 1947. The vegetation of dunes and salt marshes on the Dutch islands of Terschelling, Vlieland and Texel. Ph.D. Thesis, University Utrecht.Google Scholar
  86. Wu, L., 1981. The potential for evolution of salinity tolerance in Agrostis stolonifera L. and Agrostis tenuis Sibth. New Phytol. 89: 471–486.Google Scholar
  87. Wyn Jones, R. G. & Storey, R., 1981. Betaines. In: L. G. Paleg & D. Aspinall (eds.), Physiology and biochemistry of drought resistance in plants. Academic Press, Sydney pp. 171–204.Google Scholar

Copyright information

© Dr W. Junk Publishers 1985

Authors and Affiliations

  • J. Rozema
    • 1
  • P. Bijwaard
    • 1
  • G. Prast
    • 1
  • R. Broekman
    • 1
  1. 1.Department of Ecology, Biological LaboratoryFree UniversityAmsterdamThe Netherlands

Personalised recommendations