, Volume 121, Issue 1–2, pp 101–116

Factors determining distributions of tree species and plant functional types

  • Elgene O. Box


Plant functional types have been identified by the International Geosphere Biosphere Program as functionally similar basic plant types, especially trees, as needed for global ecological modeling. Based to some extent on an earlier set of pheno-physiognomically defined plant types, a Global Biome Model was produced but has not satisfied all the desired functional criteria posed by IGBP physiologists and modelers. This paper asks two questions: what are the main environmental factors which limit terrestrial plant types, especially tree types; and how many types of potential vegetation are needed to cover the world's terrestrial vegetation patterns? Based on the main environmental factors recognized, a model of world potential dominant vegetation types was produced and used to estimate the minimal number of vegetation types needed. The resulting set of 40 potential dominant vegetation types may serve as an initial basis for a structural-functionally based set of world plant functional types.

Key words

Limitation mechanism Limiting factors Pheno-physiognomy Plant functional types Potential dominant vegetation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bailey, R.G. 1990. ‘Ecoregions Map of the Continents’ (world map with explanatory supplement). Envl. Conserv. 16(4): 307–309, plus map.Google Scholar
  2. Box, E.O. 1981. Macroclimate and Plant Forms: An Introduction to Predictive Modeling in Phytogeography. Tasks for Vegetation Science, Vol. 1. The Hague: Dr. W. Junk BV, Publishers. 258 pp.Google Scholar
  3. Box, E.O. 1982. SOLWAT: A Minimal-Input Soil Water Simulation System Applicable to a Full Range of Natural Situations. User's Manual for Version 2.2 (27 pp, computer-printable) + FORTRAN program (from the author).Google Scholar
  4. Box, E.O. 1984. Productivity and plant types — some thoughts on a synthesis. Portugaliae Acta Biolog., ser. A 17: 129–148.Google Scholar
  5. Box, E.O. 1986. Some Climatic Relations of the Vegetation of Argentina, in global perspective. In: Eskuche, U. & Landolt, E. (eds), Contributions to the Knowledge of the Flora and Vegetation of Northern Argentina. Zürich: Veröff. Geobot. Inst. ETH, Stiftung Rübel, pp. 181–216.Google Scholar
  6. Box, E.O. 1987. Plant life forms and mediterranean environments. Annali di Botanica 45(2): 7–42.Google Scholar
  7. Box, E.O. 1988. Some similarities in the climates and vegetation of central Honshu and central eastern North America. Veröff. Geobot. Inst. Rübel 98: 141–168.Google Scholar
  8. Box, E.O. 1993. Coordinating theoretical and satellite-based global vegetation maps. In: Proceedings, Autumn 1993 Meeting, Japanese Society for Photogrammetry and Remote Sensing, Kanazawa, pp. 55–56.Google Scholar
  9. Box, E.O., Crumpacker, D.W. & Hardin, E.D. 1993. A climatic model for plant species locations in Florida. J. Biogeography 20: 629–644.Google Scholar
  10. Brady, N.C. 1974. The Nature and Properties of Soils. 8th edition. New York: Macmillan Publ. Co.Google Scholar
  11. Chapin, F.S. 1993. Functional Role of Growth Forms in Ecosystem and Global Processes. In: Ehleringer, J.R. & Field, Ch. (eds), Scaling Physiological Processes: Leaf to Globe, San Diego: Academic Press, pp. 287–312.Google Scholar
  12. Cramer, W.P. & R., Leemans 1993. Assessing Impacts of Climate Change on Vegetation using Climate Classification Systems. In: Solomon, A.M. & Shugart, H.H. (eds), Vegetation Dynamics and Global Change. London: Chapman and Hall. 338 pp., pp. 190–217.Google Scholar
  13. GCTE 1991. Report of Focus 2 Meeting, Trondheim, Norway, 11–14 June 1991, Canberra: GCTE Core Project Office.Google Scholar
  14. Grime, J.P. 1979. Plant Strategies and Vegetation Processes. New York: Wiley. 222 pp.Google Scholar
  15. Grime, J.P. 1993. Vegetation Functional Classification Systems as Approaches to Predicting and Quantifying Global Vegetation Change. In: Solomon, A.M. & Shugart, H.H. (eds), Vegetation Dynamics and Global Change. London: Chapman and Hall. 338 pp., pp. 293–305.Google Scholar
  16. Holdridge, L.R. 1947. Determination of world plant formations from simple climatic data. Science 105: 367–368.Google Scholar
  17. Holdridge, L.R. 1959. A simple method for determining potential evapotranspiration from temperature data. Science 130: 572.Google Scholar
  18. Holdridge, L.R. 1967. Life Zone Ecology. San Jose (Costa Rica): Tropical Science Center.Google Scholar
  19. Humboldt, A.von 1806. Ideen zu einer Physiognomik der Gewächse. Stuttgart: Cotta. 28 pp.Google Scholar
  20. Humboldt, A. von 1807. Ideen zu einer Geographie der Pflanzen nebst einem Naturgemälde der Tropenländer. Tübingen.Google Scholar
  21. IGBP 1992. Global Change: Reducing Uncertainties. Stockholm: IGBP Secretariat. 40 pp.Google Scholar
  22. Larcher, W. 1976. Ökologie der Pflanzen. 2nd edition. Stuttgart: Verlag Eugen Ulmer. 320 pp.Google Scholar
  23. Lauer, W. 1952. Humide und aride Jahreszeiten in Afrika und Südamerika und ihre Beziehung zu den Vegetationsgürteln. Bonner Geograph. Anhandl. 9.Google Scholar
  24. Levitt, J. 1969. Growth and survival of plants at extremes of temperature — a unified concept. Symp. Soc. Experim. Biol. 23: 395–448.Google Scholar
  25. Levitt, J. 1972. Responses of Plants to Environmental Stresses. New York: Academic Press. 697 pp.Google Scholar
  26. Lieth, H. 1975. Primary Production of the Major Vegetation Units of the World. In: Lieth, H. & Whittaker, R.H. (eds), Primary Productivity of the Biosphere. New York: Springer-Verlag, pp. 203–215.Google Scholar
  27. Mather, J.R. & Yoshioka, G.A. 1966. The Role of Climate in the Distribution of Vegetation. In: Carter, D.B. & Mather, J.R. (eds), Climatic Classification for Environmental Biology. Public. in Climatol. (Univ. Delaware) 19(4): 372–384.Google Scholar
  28. Meentemeyer, V. & Box, E.O. 1987. Scale effects in studies of landscape diversity and disturbance. In: Turner, M.G. (ed), The Role of Landscape Heterogeneity in the Spread of Disturbance. New York: Springer-Verlag, pp. 15–34.Google Scholar
  29. Prentice, I.C., Cramer, W., Harrison, S.P., Leemans, R., Monserud, R.A. & Solomon, A.M. 1992. Global biome model: predicting global vegetation patterns from plant physiology and dominance, soil properties and climate. J. Biogeogr. 19: 117–134.Google Scholar
  30. Rübel, E.F. 1930. Pflanzengesellschaften der Erde. Verlag Hans Huber. 464 pp.Google Scholar
  31. Schmithüsen, J. 1976. Atlas zur Biogeographie. Meyers Grosser Physischer Weltatlas, vol. 3. Mannheim/Wien/Zürich: Bibliographisches Institut.Google Scholar
  32. Smith, T.M., Shugart, H.H., Woodward, F.I. & Burton, P.J. 1993. Plant Functional Types. In: Solomon, A.M. & Shugart, H.H. (eds), Vegetation Dynamics and Global Change. London: Chapman and Hall. 338 pp., pp. 272–292.Google Scholar
  33. Solomon, A.M. & Shugart, H.H. (eds) 1993. Vegetation Dynamics and Global Change. London: Chapman and Hall (for Internat. Inst. Applied Systems Analysis). 338 pp.Google Scholar
  34. Steffen, W.L., Walker, B.H., Ingram, J.S. & Koch, G.W. (eds) 1992. Global Change and Terrestrial Ecosystems: The Operational Plan. Global Change Report no. 21. Stockholm: Internat. Geosphere-Biosphere Programme. 95 pp.Google Scholar
  35. Tateishi, R. & Kajiwara, K. 1991. Global Land Cover Classification by NOAA GVI Data. In: Murai, Sh. (ed), Applications of Remote Sensing in Asia and Oceania. Tokyo: Asian Association on Remote Sensing, pp. 9–14.Google Scholar
  36. Tateishi, R., Kajiwara, K. & Odajima, T. 1991. Global land cover classification by phenological methods using NOAA GVI Data. Asian-Pacific Remote Sensing Journal 4(1): 41–50.Google Scholar
  37. Tchebakova, N.M., Monserud, R.A., Leemans, R. & Golovanov, S. 1993. A global vegetation model based on the climatological approach of Budyko. J. Biogeogr. 20: 129–144.Google Scholar
  38. Thornthwaite, C.W. & Mather, J.R. 1955. The Water Balance. Publ. in Climatol. (Univ. Delaware) 8(1): 1–104.Google Scholar
  39. Thornthwaite, C.W. & Mather, J.R. 1957. Instructions and Tables for Computing Potential Evapotranspiration and the Water Balance. Publ. in Climatol. (Univ. Delaware) 10(3): 185–311.Google Scholar
  40. Walker, B.H. 1992. Landscape to regional-scale responses of terrestrial ecosystems to global change. Abstract from IGBP symposium, reprinted in IGBP Newsletter 13, p. 18.Google Scholar
  41. Walter, H. 1977. Vegetationszonen und Klima. 3rd ed. Stuttgart: Eugen-Ulmer-Verlag. 309 pp.Google Scholar
  42. Walter, H. 1985. Vegetation of the Earth. 3rd ed. Berlin, New York, Tokyo: Springer-Verlag. 318 pp.Google Scholar
  43. Walter, H. & Box, E.O. 1976. Global classification of natural terrestrial ecosystems. Vegetatio 32: 75–81.Google Scholar
  44. Whittaker, R.H. & Likens, G.E. 1975. The Biosphere and Man. In: Lieth, H. & Whittaker, R.H. (eds), Primary Productivity of the Biosphere. New York: Springer-Verlag, pp. 305–328.Google Scholar
  45. Wolfe, J.A. 1979. Temperature parameters of humid to mesic forests of eastern Asia and relation to forests of other regions of the Northern Hemisphere and Australasia. Washington: U.S. Geological Survey, Professional Paper No. 1106. 37 pp.Google Scholar
  46. Woodward, I. 1987. Climate and Plant Distribution. Cambridge University Press. 174 pp.Google Scholar
  47. Zabinski, C. & Davis, M.B. 1989. Hard times ahead for Great Lakes forests: a climate threshold model predicts responses to CO2-induced climate change. In: Smith, J.B. & Tirpak, D. (eds), The Potential Effects of Global Climate Change on the United States, Appendix D: Forests. Washington: US Environm. Protection Agency, pp. 5–1–5–19.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Elgene O. Box
    • 1
    • 2
  1. 1.Department of GeographyUniversity of GeorgiaAthensUSA
  2. 2.Institute of EcologyUniversity of GeorgiaAthensUSA
  3. 3.Institute of Industrial ScienceTokyo UniversityTokyoJapan

Personalised recommendations