, Volume 125, Issue 2, pp 193–205 | Cite as

Spatial patterns of dispersal, seed predation and germination during colonization of abandoned grassland by Quercus petraea and Corylus avellana

  • Johannes Kollmann
  • Hans-Peter Schill


Key processes during recruitment of Quercus petraea and Corylus avellana were investigated in abandoned calcareous grasslands and adjacent scrub using the following methods: (1) observation of hoarding animals during the main period of ripening of acorns and hazel nuts, (2) exposition of seeds on the soil surface and in 5–6 cm depth to test differences in predation and germination, and (3) mapping of seedlings in the grasslands. European jays (Garrulus glandarius) and mice were the main disperser of seeds. Jays preferred acorns, whereas the rodents were less selective, but probably more important for dispersal of nuts. The maximum dispersal distance was about 10–20 m for mice and was estimated several hundred metres for jays. Mice collected hoards of several seeds in about 2 cm depth in the soil, whereas jays stored single seeds. Seed predation and probably hoarding by mice were highest under scrub and in unmown grassland, while jays preferred mown sites for hoarding. However, hiding of seeds in the soil reduced losses in all sites. Predation of nuts was slightly less intensive than that of acorns. Seeds of Corylus were more sensitive to desiccation than Quercus, but in both species germination was lower for seeds exposed on the soil surface and in drier sites. Quercus and Corylus were the most abundant woody species in the fallow grasslands, probably due to the effective multi-staged dispersal by jays and mice, whereas wind-dispersed and fleshy-fruited species were less common; the latter restricted to margins of adjacent scrubland. The study provides several examples for discordance in suitability of patches for seeds and seedlings due to different habitat requirements of successive developmental stages. This result emphasizes the need for studies in the multiple stages during recruitment of vertebrate-dispersed plants.

Key words

Garrulus glandarius Hoarding Recruitment Retrieval Rodents Secondary dispersal 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbott, H. G. & Quink, T. F. 1970. Ecology of eastern white pine seed caches made by small forest mammals. Ecology 51: 271–278.Google Scholar
  2. Andersson, C. 1991. Distribution of seedlings and saplings of Quercus robur in a grazed deciduous forest. Journal of Vegetation Science 2: 279–282.Google Scholar
  3. Ashby, K. R. 1959. Prevention of regeneration of woodland by tield mice (Apodemus sylvaticus L.) and voles (Clethrionomys glareolus Schreber and Microtus arvensis L.). Quarterly Journal of Forestry 53: 148–158.Google Scholar
  4. Bang, P. & Dahlström, P. 1977. Tierspuren. BLV-Verlag, Müchen.Google Scholar
  5. Bossema, I. 1979. Jays and oaks: an eco-ethological study of a symbiosis. Behaviour 70: 1–117.Google Scholar
  6. Bowers, M. A. & DooleyJr., J. L. 1993. Predation hazard and seed removal by small mammals: microhabitat versus pathch scale effects. Oecologia 94: 247–254.Google Scholar
  7. Brohmer, P. 1988. Fauna von Deutschland. 17th edition. Quelle & Meyer Verlag, Heidelberg.Google Scholar
  8. Chettleburgh, M. R. 1952. Observations on the collection and burial of acorns by jays in Hainault Forest. British Birds 45: 359–364.Google Scholar
  9. Darley-Hill, S. & Johnson, W. C. 1981. Acorn dispersal by the blue jay (Cyanocitta cristata). Occologia 50: 231–232.Google Scholar
  10. DeGange, A. R., Fitzpatrick, J. W., Layne, J. N. & Woolfenden, G. E. 1989. Acorn harvesting by Florida scrub jays. Ecology 70: 348–356.Google Scholar
  11. De Steven, D. 1991a. Experiments on mechanisms of tree establishment in old-field succession: seedling emergence. Ecology 72: 1066–1075.Google Scholar
  12. De Steven, D. 1991b. Experiments on mechanisms of tree establishment in old-field succession: seedling survival and growth. Ecology 72: 1076–1088.Google Scholar
  13. Ellenberg, H. 1988. Vegetation Ecology of Central Europe. Cambridge University Press, Cambridge.Google Scholar
  14. Geologisches Landesamt Baden-Württemberg (ed.) 1959. Geologische Exkursionskarte des Kaiserstuhls 1:25.000, mit Erläutcrungen. Stuttgart.Google Scholar
  15. Gill, D. S. & Marks, P. L. 1991. Tree and shrub seedling colonization of old fields in central New York. Ecological Monographs 61: 183–205.Google Scholar
  16. Glutz von Blotzheim, U. N. & Bauer, K. M., 1993. Handbuch der Vögel Mittelcuropas. Teil 3: Passeriformes, Vol. 13, Aula Verlag, Wiesbaden.Google Scholar
  17. Goodwin, D. 1955. Jays and carrion crows recovering hidden food. British Birds 48: 181–183.Google Scholar
  18. Goodwin, D. 1956. Further observations on the behaviour of the jay Garrulus glandarius. Ibis 98: 186–219.Google Scholar
  19. Herrera, C. M. 1986. Vertebrate-dispersed plants: Why they don't behave the way they should. In: Estrada, A. & Fleming, T. H. (eds). Frugivores and Seed Dispersal. pp. 5–18, Junk, Dordrecht.Google Scholar
  20. Hulme, P. E. 1994. Post-dispersal seed predation in grassland: its magnitude and sources of variation. Journal of Ecology 82: 645–652.Google Scholar
  21. Janzen, D. 1971. Seed predation by animals. Annual Review of Ecology and Systematics 2: 465–492.Google Scholar
  22. Jarvis, P. G. 1964. Interference by Deschampsia flexuosa (L.) Trin. Oikos 15: 56–78.Google Scholar
  23. Jensen, T. S. 1982. Seed production and outbreaks of non-cyclic rodent populations in decidous forests. Oecologia 54: 184–192.Google Scholar
  24. Jensen, T.S. 1985. Seed-seed predator interactions of European beech, Fagus silvatica and forest rodents. Clethrionomys glareolus and Apodemus flavicollis. Oikos 44: 149–156.Google Scholar
  25. Jensen, T. S. & Nielsen, O. F. 1986. Rodents as seed dispersers in a heath-oak wood succession. Oecologia 70: 214–221.Google Scholar
  26. Jordano, P. & Herrera, C. M. 1995. Shuffling the offspring: Uncoupling and spatial discordance of multiple stages in vertebrate seed dispersal. Écoscience 2: 230–237.Google Scholar
  27. Kollmann, J. 1994. Ausbreitungsökologie endozoochorer Gehölzarten. Veröffentlichungen Projekt ‘Angewandte Ökologie’ 9: 1–212.Google Scholar
  28. Kollmann, J. 1995. Regeneration window for fleshy-fruited plants during scrub development on abandoned grassland. Écoscience 2: 213–222.Google Scholar
  29. Kollmann, J. & Pirl, M. (1995). Spatial pattern of seed rain of fleshy-fruited plants in a scrubland-grassland transition. Acta Oecologica 16: 313–329.Google Scholar
  30. Kratochwil, A. 1984. Pflanzengesellschaften und Blütenbesucher-Gemeinschaften: biozönologische Untersuchungen in einem nicht mehr bewirtschafteten Halbtrockenrasen (Mesobrometum) im Kaiserstuhl. Phytocoenologia 11: 455–469.Google Scholar
  31. Matters, H. 1982. Die Labensgemeinschaft von Tannenhäher. Nucifraga caryocatactes (L.), und Arve. Pinus cembra L. Berichte Eidgenössische Anstalt für das forstliche Versuchswesen 241: 3–74.Google Scholar
  32. Miyaki, M. & Kikuzawa, K. 1988. Dispersal of Quercus mongolica acorns in a broadleaved deciduous forest. 2. Scatterhoarding by mice. Forest Ecology and Management 25: 9–16.Google Scholar
  33. Müller-Schneider, P. 1983. Verbreitungsbiologie (Diasporologie) der Blütenpflanzen. Veröffentlichungen Geobotanisches Institut ETH 61: 1–226.Google Scholar
  34. Myster, R. W. & Pickett, S. T. A. 1993. Effects of litter, distance, density and vegetation patch type on postdispersal tree seed predation in old filds. Oikos 66: 381–388.Google Scholar
  35. Nilsson, S. G. 1985. Ecological and evolutionary interactions between reproduction of beech Fagus silvatica and seed eating animals. Oikos 44: 157–164.Google Scholar
  36. Oberdorfer, E. 1990. Pflanzensoziologische Exkursionsflora. 6th edition. Ulmer Verlag, Stuttgart.Google Scholar
  37. Ovington, J. D. & MacRae, C. 1960. The growth of seedling of Quercus petraea. Journal of Ecology 48: 549–555.Google Scholar
  38. Price, M. V. & Jenkins, S. H. 1986. Rodents as seeds consumers and dispersers. In: Murray, D. R. (ed.). Seed Dispersal. pp. 191–235. Academic Press, Orlando.Google Scholar
  39. Sachs, L. 1993. Statistische Methoden. 7th edition, Springer Verlag, Berlin.Google Scholar
  40. Schlund, W. & Scharfe, F. 1995. Kleinsäuger in Halbtrockenrasen unterschiedlicher Sukzessionsstadien. Zeitschrift für Ökologic und Naturschutz. 4: 117–124.Google Scholar
  41. Schreiber, K.-F. 1993. Standortsabhängige Entwicklung von Sträuchern und Bäumen in Sukzessions verlauf von brachgefallenem Grünland in Südwestdeutschland. Phytocoenologia 23: 539–560.Google Scholar
  42. Schubert, R. 1973. Probleme der natürlichen Wiederbewaldung von Naturschutzgebieten mit Xerothermstandorten im südlichen Teil der DDR. Acta Botanica Academiac Scientiarum Hungaricae 19: 317–327.Google Scholar
  43. Schupp, E. W. 1988. Factors affecting post-dispersal seed survival in a tropical forest. Oecologia 76: 525–530.Google Scholar
  44. Schupp, E. W. 1993. Quantity, quality and the effectiveness of seed dispersal by animals. Vegetatio 107/108: 15–29.Google Scholar
  45. Schupp, E. W. 1995. Seed-seedling conflicts, habitat choice, and patterns of plant recruitment. American Journal of Botany 82: 399–109.Google Scholar
  46. Schupp, E. W. & Fuentes, M. 1995. Spatial patterns of seed dispersal and the unification of plant population ecology. Écoscience 2: 267–275.Google Scholar
  47. Schuster, L. 1950. Über den Sammeltrieb des Eichelhähers (Garrulus glandarius). Die Vogelwelt 71: 9–17.Google Scholar
  48. Shaw, M. W. 1968a. Factors affecting the natural regeneration of sessile oak (Quercus petraea) in North Wales. I. A preliminary study of acorn production, viability and losses. Journal of Ecology 56: 565–583.Google Scholar
  49. Shaw, M. W. 1968b. Factors affecting the natural regeneration of sessile oak (Quercus petraea) in North Wales. II. Acorn losses and germination under field conditions. Journal of Ecology 56: 647–660.Google Scholar
  50. Simonetti, J. A. 1989. Microhabitat use by small mammals in central Chile. Oikos 56: 309–318.Google Scholar
  51. Sork, V. L. 1984. Examination of seed dispersal and survival in red oak, Quercus rubra (Fagaceae), using metal-tagged acorns. Ecology 65: 1020–1022.Google Scholar
  52. Sork, V. L. 1993. Evolutionary ecology of mast-seeding in temperate and tropical oaks (Quercus spp.). Vegetatio 107/108: 133–147.Google Scholar
  53. Thompson, S. D. 1982. Microhabitat utilization and foraging behavior of bipedal and quadrupedal heteromyid rodents. Ecology 63: 1303–1312.Google Scholar
  54. Turcek, F. J. 1951. The continental jay (Garrulus glandarius L.) in relation to the oak (Quercus sp.) and its distribution. Lesnická Práce 29: 385–396.Google Scholar
  55. Turcek, F. J. 1951. Über das Wiederauffinden von im Boden versteckte Samen durch Tannen- und Eichelhäher. Waldhygiene 6: 215–217.Google Scholar
  56. Turcek, F. J. & Kelso, L. 1968. Ecological aspects of food transportation and storage in the Corvidae. Communications in Behavioral Biology 1: 277–297.Google Scholar
  57. Vander Wall, S. B. 1990. Food Hoarding in Animals. University of Chicago Press, Chicago.Google Scholar
  58. Vander Wall, S. B. 1994. Seed fate pathways of antclope bitterbrush: Dispersal by seed-caching yellow pine chipmunks. Ecology 75: 1911–1926.Google Scholar
  59. Vander Wall, S. B. 1995. Dynamics of yellow pine chipmunk (Tamias amoenus) seed caches: Underground traffic in bitterbrush seeds. Écoscience 2: 261–266.Google Scholar
  60. Vullmer, H. & Hanstein, U. 1995. Der Beitrag des Eichelhähers zur Eichenverjüngung in einem naturnah bewirtschafteten Wald in der Lüneburger Heide. Forst und Holz 20: 643–646.Google Scholar
  61. Wada, N. 1993. Dwarf bamboos affect the regeneration of zoochorous trees by providing habitats to acorn-feeding rodents. Oecologia 94: 403–407.Google Scholar
  62. Wadewitz, O. 1976. Die Sammelflüge des Eichelhähers. Falke 23: 160–164.Google Scholar
  63. Wilmanns, O., Wimmenauer, W., Fuchs, G., Rasbach, H. & Rasbach, K. 1989. Der Kaiserstuhl: Gesteine und Pflanzenwelt. 3rd edition. Ulmer Verlag, Stuttgart.Google Scholar
  64. Zimmermann, K. 1956. Gattungstypische Verhaltensformen von Gelbhals-, Wald- und Brandmaus. Der Zoologische Garten 22: 162–171.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Johannes Kollmann
    • 1
  • Hans-Peter Schill
    • 2
  1. 1.Geobotanisches Institut ETHZürichSwitzerland
  2. 2.Institut für Biologie II (Geobotanik)Universität FreiburgFreiburgGermany

Personalised recommendations