Vegetatio

, Volume 125, Issue 2, pp 169–183 | Cite as

Vegetation change in semiarid communities

Simulating probabilities and time scales
  • T. Wiegand
  • S. J. Milton
Article

Abstract

In arid regions, the effects of grazing or sparing management on natural communities of long-lived plants generally take decades to become evident. Event-driven dynamic behavior, unpredictable and low rainfall and complicated interactions between species make it difficult to assess probabilities and time scales of vegetation change.

To gain a better understanding of the main processes and mechanisms involved in vegetation change, we have developed a spatially explicit individual based model that simulates changes in plant communities over long time spans. The model, based on life-history attributes of the five dominant component plant species of a typical Karoo shrub community, follows the fate of each individual plant within the community, the sum of which is community dynamics. The model explores the differential effects of a realistic range of rainfall pattern on the abilities of these species to compete, survive, grow and reproduce.

The specific aim of the model is to identify key processes of vegetation change and to calculate probabilities and timespans for transitions between different vegetation states. Such knowledge is needed for species conservation and sustained animal production.

We show that the time-scale for changes of the dynamic state of the system are long compared with human lifespans. Employing the full range of possible rainfall scenarios showed that short-term community dynamics (years to decades) and species composition depend strongly on the short-term (years) sequence of rainfall events. In all simulation experiments the final vegetation state varied by more than 37% after a 60 year simulation period. Simulating resting of an overgrazed part of the shrub community indicated that little improvement in rangland condition was likely during a period of 60 years. Even such active management, as (simulated) clearing of unpalatable shrubs, resulted in only a 66% probability that degraded shrubland would be in good condition after 60 years resting. Simulated overgrazing of a rangeland in good initial condition only became obvious 40 or 50 years after the initiation of heavy grazing, and after 70 years the mean vegetation state eventually reached that of an overgrazed rangeland.

Key words

Event-driven dynamics Grid based model Grazing, Individual-based simulation model Karoo 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Austin, M. P. & Williams, O. 1988. Influence of climate and community composition on the population demography of pasture species in semiarid Australia. Vegetatio 77: 43–49.Google Scholar
  2. Bahre, C. J. 1991. A legacy of chage-historic human impact on vegetation of the Arizona borderlands. The University of Arizona Press, Tucson, Arizona, USA.Google Scholar
  3. Bond, W. J. 1994. Do mutualisms matter? Assessing the impact of pollinator and disperser disruption on plant extinction. Philosophical Transactions of the Royal Society of London B 344: 83–90.Google Scholar
  4. Caswell, H. & Etter, J. 1993. Ecological interactions in patchy environments: from patch-occupancy modells to cellular automata. In: Levin, S. A., Powell, T. M. & Steele, J. H. (eds). Patch dynamics, pp. 93–109. Springer Verlag, Berlin.Google Scholar
  5. Clements, F. E. 1916. Plant succession: an analysis of the development of vegetation. Carnegic Institute Publication 242: 1–512, Washington DC, USA.Google Scholar
  6. Cody, M.L. 1993. Do cholla cacti (Opuntia spp., subgenus Cylindropuntia) use or need plants in the Mojave desert? J. Arid Environ. 24: 139–154.Google Scholar
  7. Coffin, D. P. & Lauenroth, W. K. 1990. A gap dynamics simulation model of succession in a semiarid grassland. Ecological Modelling 49: 229–266.Google Scholar
  8. Cowling, R. M., Esler, K. J., Midgley, G. F. & Honig, M. A. 1994. Plant functional diversity, species diversity and climate in arid and semi-arid southern africa. J. Arid Environ. 27: 141–158.Google Scholar
  9. Crisp, M. D. 1978. Demography and survival under grazing of three C semi-desert shrubs. Oikos 30: 520–528.Google Scholar
  10. Danckwerts, J. E. & Stuart-Hill, G. C. 1988. The effect of severe drought and management after drought on mortality and recovery of semi-arid grassland. J. Grassl. Soc. South Africa 5(4) 128–222.Google Scholar
  11. Dean, W. R. J. & Macdonald, J. A. W. 1994. Historical changes in stocking rates of domestic livestock as a measure of semi-arid and arid rangeland degradation in the Cape Province. South Africa. J. Arid Environ. 26(3): 281–198.Google Scholar
  12. Eldridge, D. J. & Westoby, M. 1991. Recruitment and survival in Atriplex vesicaria populations in semi-arid western New South Wales, 1977–87. Austr. J. Ecol. 16: 309–314.Google Scholar
  13. Esler, K. J. 1993. Vegetation patterns and plant reproductive processes. Ph.D. thesis, University of Cape Town, South Africa.Google Scholar
  14. Friedel, M. H. 1991. Range condition assessment and the concepts of thresholds: A viewpoint. J. Range Manage. 44: 422–426.Google Scholar
  15. Friedel, M. H., Foran, D. B. & Stafford Smith, D. M. 1990. Where creeks run dry or ten feet high: pastoral management in arid Australia. Proc. Ecol. Soc. Australia 16: 185–194.Google Scholar
  16. George, M. R., Brown, J. R. & Clawson, W. J. 1992. Application of non-equilibrium ecology to management of Mediterranean grasslands. J. Range Manage. 45: 436–440.Google Scholar
  17. Griffin, G. F. & Friedel, M. H. 1985. Discontinuous change in central Australia: some implications of major ecological events for land management. J. Arid Environ. 9: 63–80.Google Scholar
  18. Harrington, G. N., Wilson, A. D. & Young, M. D. 1984. Management of Rangeland Ecosystems. In: Harrington, G. N., Wilson, A. D. & Young, M. D. (eds), Management of Australia's Rangelands. Pp. 3–13. CSIRO. Melbourne.Google Scholar
  19. Hoffman, M. T., Barr, G. D. & Cowling, R. M. 1990. Vegetation dynamics in the semi-arid Karoo, South Africa: The effect of seasonal rainfall and competition on grass and shrub basal cover. S. Afr. J. Sci. 86: 462–463.Google Scholar
  20. Hogeweg, P. 1988. Cellular automata as a paradigm for ecological modeling. Applied Mathematics and Computation 27: 81–100.Google Scholar
  21. Jeltsch, F. & Wissel, C. 1994. Modelling dieback phenomena in natural forests. Ecological Modelling 75/76: 111–121.Google Scholar
  22. Jeltsch, F., Milton S. J., Dean. W. R. J. & van Royen, N. Tree spacing and coexistence in semi-arid savannas. J. Ecol. (in press).Google Scholar
  23. Lavorel, S., O'Neill, R. V. & Gardner, R. H. 1994. Spatio-temporal dispersal strategies and annual plant species cocxistence in a structured landscape. Oikos 71: 75–88.Google Scholar
  24. Le Houerou, H. N. 1989. The grazing land ecosystems of the African Sahel. Springer-Verlag, New York.Google Scholar
  25. Louw, G. N. & Seely, M. K. 1982. Ecology of Desert Organisms. Longman, Essex.Google Scholar
  26. MacMahon, J. A. & Wagner, F. H. 1985. The Mojave, Sonoran and Chihuahuan deserts of North America. Pp. 105–202. In: Evenari, M., Noy-Meir, I. & Goodall, D. W. (eds). Hot deserts and Arid Shrublands. Elsevier Science Publishers, Amsterdam.Google Scholar
  27. McAuliffe, J. R. 1988. Markovian dynamics of simple and complex desert plant communities. Am. Nat. 131: 459–490.Google Scholar
  28. Milton, S. J. 1992. Effects of rainfall. competition and grazing of flowering of Osteospermum sinuatum (Asteraceae) in arid Karoo Rangeland. J. Grassl. Soc. South Afr. 9: 158–164.Google Scholar
  29. Milton, S. J. 1994. Growth, flowering and recruitment of shrubs in grazed and in protected rangeland in the arid Karoo, South Africa. Vegetatio 111: 17–27.Google Scholar
  30. Milton, S. J. 1995. Spatial and temporal patterns in the emergence and survival of seedlings in arid Karoo shrubland. J. Appl. Ecol. 32: 145–156.Google Scholar
  31. Milton, S. J. & Dean, W. R. J. 1990. Seed production in rangelands of the southern Karoo. S. Afr. J. Sci. 86: 231–233.Google Scholar
  32. Milton, S. J. & Dean, W. R. J. 1993. Selection of seeds by harvester ants (Messor capensis) in relation to condition of arid rangeland. J. Arid Environ. 24: 63–74.Google Scholar
  33. Milton, S. J. & Hoffman, M. T. 1994. The application of state-and-transition models to rangeland research and management in arid succulent and semi-arid grassy Karoo. South Africa. Afr. J. Range For. Sci. 11: 18–26.Google Scholar
  34. Milton, S. J., Dean, W. R. J. & Kerley, G. I. H. 1992. Tierberg Karoo Research Centre: history, physical environment, flora and fauna. Trans. Roy. Soc. S. Afr. 48: 15–46.Google Scholar
  35. Milton, S. J., Dean, W. R. J., du Plessis, M. A. & Siegfried, W. R. 1994. A conceptual model of arid rangeland degradation—the escalating cost of declining productivity. BioScience 44: 70–76.Google Scholar
  36. Milton, S. J., Dean, W. R. J., Marincowitz, C. P. & Kerley, G. I. H. 1995. Effects of the 1990/91 drought on rangeland in the Steytlerville Karoo. S. Afr. J. Sci. 91: 78–84.Google Scholar
  37. Montaña, C. 1992. The colonization of bare areas in a two-phase mosaic of an arid ecosystem. J. Ecol. 80: 315–327.Google Scholar
  38. Moore, A. 1989. Die ekologie en ekofisiologie van Rhigozum trichotomum. PhD thesis, University of Port Elizabeth, South Africa.Google Scholar
  39. Moloney, K. A. & Levin, S. A. 1996. The effects of disturbance architecture on landscape level population dynamics. Ecology 77: 375–394.Google Scholar
  40. O'Connor, T. G. O. 1991. Local extinction in perennial grasslands: a life-history approach. Am. Nat. 137: 753–773.Google Scholar
  41. Perkins, J. S. & Thomas, D. S. G. 1993. Environmental responses and sensitivity to permanent cattle ranching, semi-arid western central Botswana. In: Thomas, D. S. G. & Allison, R. J. (eds). Landscape Sensitivity. Pp. 273–286. New York, Wiley and Sons.Google Scholar
  42. Schlesinger, W. H., Reynolds, J. F., Cunningham, G. L., Huenneke, L. F., Jarrell, W. M., Virginia, R. A. & Whitford, W. G. 1990. Biological feedbacks in global desertification. Science 247: 1043–1048.Google Scholar
  43. Schofield, C. J. & Bucher, E. H. 1986. Industrial contributions to desertification in South America. Trends. Ecol. Evol. 1: 78–80.Google Scholar
  44. Scholes, R. J. 1990. Change in nature and the nature of change: interactions between terrestrial ecosystems and the atmosphere. S. Afr. J. Sci. 86: 350–354.Google Scholar
  45. Seastedt, T. R., Ramundo, R. A. & Hayes, D. C. 1988. Maximization of soil animals by foliage herbivory: empirical evidence, graphical and conceptual models. Oikos 51: 243–248.Google Scholar
  46. Silvertown, J., Holtier, S., Johnson, J. & Dale, P. 1992. Cellular automata models of interspecific competition for space—the effect of pattern and progess. J. Ecol. 80: 527–534.Google Scholar
  47. Skarpe, C. 1991. Impact of grazing in savanna ecosystems. Ambio 20: 351–356.Google Scholar
  48. Smith, E. L. 1988. Successional concepts in relation to range condition assessment. In: Tueller, P. T. (ed.), Vegetation Science Applications for Rangeland Analysis and Management. Pp. 113–134. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
  49. Turner, R. M. 1990. Long-term vegetation change at a fully protected Sonoran desert site. Ecology 71: 464–477.Google Scholar
  50. Tyson, P.D. 1986. Climatic change and variability in Southern Africa. Oxford Press, Cape Town.Google Scholar
  51. Vorster, M. 1985. Die ordening van die landtipes in die Karoostreek in redelike homogene boerderygebiede deur middel van plantegroei-en omgewings faktore. D.Sc. thesis, Potchefstroom University, South Africa.Google Scholar
  52. Walker, B. H. 1993. Rangeland Ecology: Understanding and Managing Change. Ambio 22: 80–87.Google Scholar
  53. West, N. E. 1993. Biodiversity of rangelands. J. Range Manage. 46: 2–13.Google Scholar
  54. Westoby, M., Walker, B. M. & Noy-Meir, I. 1989. Opportunistic management for rangelands not at equilibrium. J. Range Manage. 42: 266–274.Google Scholar
  55. Wiegand, T., Milton, S. J. & Wissel, C. 1995. A simulation model for a shrub-ecosystem in the semi-arid Karoo, South Africa. Ecology 76: 2205–2221.Google Scholar
  56. Wiegand, T. & Milton, S. J. A simulation model for shrubland ecosystem dynamics in arid Karoo, South Africa, In: Barrow, J. R., McArthur, E. D., Sosebee, R. E. & Tausch, R. J. (eds), Proceedings: shrubland ecosystem dynamics in a changing environment. U.S. Department of Agriculture, Forest Service, Intermoutain Research Station (in press).Google Scholar
  57. Wissel, C. 1992. Modelling the mosaic cycle of a Middle European beech forest. Ecological Modelling 63: 29–43.Google Scholar
  58. Williams, O. B. & Roe, R. 1975. Management of arid grasslands for sheep: plant demography of six grasses in relation to climate and grazing. Proc. Ecol. Soc. Australia 9: 142–156.Google Scholar
  59. Wilson, A. D. & Hodgkinson, K. C. 1991. The response of grasses to grazing and its implications for the management of native grasslands. In: Garden, D. & Dowling, P. (eds). Proceedings of a Workshop on Australian Native Grasses. Pp. 47–59. C Wool Corporation, Melbourne, Australia.Google Scholar
  60. Wolfram, S. 1986. Theory and application of cellular automata. World Science Publications. Singapore, Malaysia.Google Scholar
  61. Yeaton, R. I., and K. J. Esler. 1990. The dynamics of a succulent Karoo vegetation. A study of species association and recruitment. Vegetatio 88: 103–113.Google Scholar
  62. Zucchini, W., Adamson, P. & McNeill, L. 1992. A model of southern African rainfall. S. Afr. J. Sci. 88: 103–109.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • T. Wiegand
    • 1
  • S. J. Milton
    • 2
  1. 1.Department of Ecological ModellingUFZ-Centre of Environmental ResearchLeipzigGermany
  2. 2.FitzPatrick InstituteUniversity of Cape TownRondeboschSouth Africa

Personalised recommendations