Advertisement

Journal of Elasticity

, Volume 29, Issue 2, pp 175–202 | Cite as

Global solution to the incompressible viscous-multipolar material problem

  • Jindřich Nečas
  • Michael Růžička
Article

Abstract

In the paper we give a proof of the global existence of the weak solution to the initial-boundary-value problem describing an incompressible elasto-viscous-multipolar material in finite geometry. A brief introduction to the physical background of viscous-multipolar materials is given. We suggest the hypothesis

% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaamaaxadabaGaeu4OdmfaleaacaWGPbGaaiilaGqaciaa-bcacaWG% QbGaa8hiaiabg2da9iaa-bcacaaIXaaabaGaaG4maaaakiaa-bcada% abdiqcaasaaOWaaSaaaKaaGeaacqGHciITcqqHOoqwcaGGOaGaamOr% aiaacYcacqaH4oqCcaGGPaaabaGaeyOaIyRaamOraOWaaSbaaSqaai% aadMgacaWGbbaabeaaaaqcaaIaa8hiaiaadAeakmaaBaaaleaacaWG% QbGaamyqaaqabaaajaaqcaGLhWUaayjcSdGaa8hiaiabgsMiJkaado% gakmaaBaaaleaacaWFVbaabeaakiaadwgacaGGOaGaamOraiaacYca% ieaacaGFGaGaeqiUdeNaaiykaiaa+bcacqGHRaWkcaGFGaGaam4yam% aaBaaaleaacaaIXaGaa4hiaiaacYcaaeqaaaaa!686E!\[\mathop \Sigma \limits_{i, j = 1}^3 \left| {\frac{{\partial \Psi (F,\theta )}}{{\partial F_{iA} }} F_{jA} } \right| \leqslant c_o e(F, \theta ) + c_{1 ,} \] which enables one to obtain a priori estimates.

Key words

viscous-multipolar materials a priori estimates global existence 

AMS classification

35B45 35G25 35G30 73B05 73B25 73G15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Ball, Minimizers and Euler-Lagrange Equation. Lecture Notes in Physics, Berlin: Springer (1984).Google Scholar
  2. 2.
    P. Chadwick, Continuum Mechanics. London: George Allen & Unwin Ltd. (1976).Google Scholar
  3. 3.
    A.E. Green and R.S. Rivlin, Simple force and stress multipoles. Arch. Rational Mech. Anal. 16 (1964) 325–353.Google Scholar
  4. 4.
    J. Kurzweil, Ordinary Differential Equations (in Czech). Praha: SNTL (1976).Google Scholar
  5. 5.
    O.A. Ladyshenskaya, V.A. Solonnikov, N.N. Uraltzeva, Linear and Quasilinear Parabolic Equations (in Russian). Moskva: Mir (1967).Google Scholar
  6. 6.
    J. Nečas, Introduction to the Theory of Nonlinear Elliptic Equations, Leipzig: Teubner (1983).Google Scholar
  7. 7.
    J. Nečas, A. Novotný and M. Šilhavý, Global solution to the compressible isothermal multipolar fluid. J. Math. Ana. Appl. 162 (1991) 223–241.Google Scholar
  8. 8.
    J. Nečas and M. Šilhavý, Multipolar viscous fluids. Quant. Appl. Math. 49 (1991) 247–265.Google Scholar
  9. 9.
    A.J.M. Spencer, Theory of Invariants. New York: Academic Press (1971).Google Scholar
  10. 10.
    C. Truesdell and W. Noll, The Non-Linear Field Theories of Mechanics, Handbuch der Physik III/3. Berlin: Springer (1965).Google Scholar
  11. 11.
    E. Zeidler, Nonlinear Functional Analysis 1. Berlin: Springer (1988).Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • Jindřich Nečas
    • 1
  • Michael Růžička
    • 2
  1. 1.Mathematical InstituteCharles University PraguePrague 88Czechoslovakia
  2. 2.Section of MathematicsUniversity of LeipzigLeipzigGermany

Personalised recommendations