, Volume 95, Issue 1, pp 59–64 | Cite as

Contribution of photosynthetic sulphur bacteria to primary production in Lake Vechten

  • C. L. M. Steenbergen


The role of photosynthetic sulphur bacteria as primary producers in monomictic Lake Vechten (The Netherlands) is described. Lake Vechten has a surface area of 4.7 ha, a maximum depth of 11.9 m and a mean depth of 6 m.

Bacterial populations, appearing at the boundary layer of the oxidative and reductive zone from early June till late October, were composed of cyanobacteria, Chromatiaceae and green and brown coloured Chlorobiaceae. Predominating genera were Synechococcus, Chloronema, Chromatium and Thiopedia. The photosynthetic sulphur bacteria accounted for a primary production rate of 13.6–106.1 mg C.m−2 day−1, which corresponded to 3.9–17.5% of total daily productivity in the pelagial zone. The percentage of photosynthetic bacterial production of total annual planktonic primary production calculated for the entire pelagial zone, taking into account compensation for decreasing volume of lower strata, was 3.6% (i.e. 127 against a total production of 3 510 kg C.lake−1yr−1).


primary production photosynthetic bacteria carbon cycle secondary production 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baumann, E. W., 1974. Determination of parts per billion sulfide in water with the sulfide-selective electrode. Analyt. Chem. 46: 1345–1347.Google Scholar
  2. Best, E. P. H., Blaauboer, M. C. I., Cappenberg, Th. E., Gons, H. J., Gulati, R. D., De Kloet, W. A., Steenbergen, C. L. M. & Verdouw, H., 1978. Towards an integrated study of the ecosystem of Lake Vechten. Hydrobiol. Bull. 12: 107–118.Google Scholar
  3. Blaauboer, M. C. I., 1982. The phytoplankton species composition and the seasonal periodicity in Lake Vechten from 1956 to 1979. Hydrobiologia 95: 25–36.Google Scholar
  4. Cappenberg, Th. E., 1981. Mineralization of organic matter. In: Parma, S. & Gulati, R. D. (Eds.) Progress Report, Limnological Institute 1980. Verh. Kon. Ned. Akad. Wet. afd. Nat., 2e Reeks 77: 17–19.Google Scholar
  5. Cohen, Y., Krumbein, W. E. & Shilo, M., 1977. Solar lake (Sinai). 2. Distribution of photosynthetic microorganisms and primary production. Limnol. Oceanogr. 22: 609–620.Google Scholar
  6. Culver, D. A. & Brunskill, G. J., 1969. Fayetteville Green Lake, New York. V. Studies of primary production and zooplankton in a meromictic marl lake. Limnol. Oceanogr. 14: 862–873.Google Scholar
  7. Golterman, H. L., Clymo, R. S. & Ohnstad, M. A. M., 1978. Methods for physical & chemical analysis of fresh waters. IBP Handbook No. 8. Blackwell, Oxford.Google Scholar
  8. Gons, H. J., 1981. Carbon cycle in Lake Vechten: In: Parma, S. & Gulati, R. D. (Eds.) Progress Report, Limnological Institute 1980. Verh. Kon. Ned. Akad. Wet. afd. Nat., 2e Reeks 77: 30–36.Google Scholar
  9. Cophen, M., Cavari, B. Z. & Berman, T., 1974. Zooplankton feeding on differentially labelled algae and bacteria. Nature 247: 393–394.Google Scholar
  10. Gromet-Elhanan, Z., 1977. Electron transport and photophosphorylation in photosynthetic bacteria. In: Trebst, A. & Avron, M. (Eds.) Encyclopedia of Plant Physiology, Vol. 5. Springer, Berlin.Google Scholar
  11. Gulati, R. D., 1975. A study on the role of herbivorous zooplankton community as primary consumers of phytoplankton in Dutch lakes. Verh. int. Verein Limnol. 19: 1202–1210.Google Scholar
  12. Padan, E., 1979. Impact of facultatively anaerobic photoautotrophic metabolism on ecology of Cyanobacteria (blue-green algae). In: Alexander, M. (Ed.) Advances in Microbial Ecology, Vol. 3. Plenum, New York.Google Scholar
  13. Parkin, T. B. & Brock, T. D., 1980. Photosynthetic bacterial production in lakes: the effect of light intensity. Limnol. Oceanogr. 25: 711–718.Google Scholar
  14. Parma, S., 1971. Chaoborus flavicans (Meigen)(Diptera, Chaoboridae) an autecological study. Ph. D. thesis, University of Groningen. 128 pp.Google Scholar
  15. Pfennig, N., 1978. General physiology and ecology of photosynthetic bacteria. In: Clayton, R. K. & Sistrom, W. R. (Eds.) The Photosynthetic Bacteria. Plenum, New York.Google Scholar
  16. Sorokin, Y. I., 1965. On the trophic role of chemosynthesis and bacterial biosynthesis in water bodies. Mem. Ist. Ital. Idrobiol. 18: 187–205.Google Scholar
  17. Sorokin, Y. L., 1970. Interrelations between sulfur and carbon turnover in meromictic lakes. Arch. Hydrobiol. 66: 391–446.Google Scholar
  18. Steemann-Nielsen, E., 1952. The use of radio active carbon (14C) for measuring organic production in the sea. J. Cons. perm. int. Explor. Mer 18: 117–140.Google Scholar
  19. Steenbergen, C. L. M. & Korthals, H. J., in press. Distribution of phototrophic microorganisms in the anaerobic and microaerophilic strata of Lake Vechten (The Netherlands). Pigment analysis and role in primary production. Limnol. Oceanogr.Google Scholar
  20. Steenbergen, C. L. M. & Verdouw, H., 1982. Lake Vechten: aspects of its morphometry, climate, hydrology and physicochemical characteristics. Hydrobiologia 95: 11–23.Google Scholar
  21. Takahashi, M. & Ichimura, S., 1968. Vertical distribution and organic matter production of photosynthetic sulfur bacteria in Japanese lakes. Limnol. Oceanogr. 13: 644–655.Google Scholar
  22. Trebst, A., 1980. Inhibitors in electron flow: tools for the functional and structural localization of carriers and energy conservation sites. In: San Pietro, A. (Ed.) Methods in Enzymology, Vol. 69. Academic, New York.Google Scholar
  23. Wetzel, R. G., 1975. Limnology. Saunders, Philadelphia.Google Scholar

Copyright information

© Dr W. Junk Publishers 1982

Authors and Affiliations

  • C. L. M. Steenbergen
    • 1
  1. 1.Limnological Institute‘Vijverhof’ LaboratoryNieuwersluisThe Netherlands

Personalised recommendations