Vegetatio

, Volume 63, Issue 3, pp 133–139 | Cite as

Clump spacing in a desert dwarf shrub community

  • I. C. Prentice
  • M. J. A. Werger
Article

Abstract

A Monte Carlo method based on Ripley's K function-a cumulative function related to the number of plants encountered at different distances from other plants-is used to test the null hypothesis of random distribution of shrub clumps in a desert dwarf shrub community in Namaqualand, South Africa, where Psilocaulon arenosum is the dominant shrub. The method takes into account the apparent regularity of pattern caused by the finite size (up to 2 m diameter) of the clumps. It is shown that the clump centres are significantly aggregated (compared to random expectation) at distances on the order of 1 m. Such aggregation is expected, as a simple result of regeneration near to seed sources, if the time between catastrophic droughts is short in relation to the time required for development of a non-aggregated or regular pattern determined by moisture competition. No significant regulatiry was detected at distances of 3 m or less. One subplot showed regularity above 3 m, but this pattern was not shown by the other subplot and may not be a competition effect. These results support a hypothesis of aggregation caused by regeneration pattern decaying slowly toward randomness as larger individuals compete.

Keywords

Competition Desert Monte Carlo Poisson process Sequential inhibition Spatial pattern 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, D. J., 1971. Pattern in desert perennials. J. Ecol. 59: 555–560.Google Scholar
  2. Barbour, M., 1969. Age and space distribution of the desert shrub Larrea divaricata. Ecology 50: 679–685.Google Scholar
  3. Beals, E. W., 1968. Spatial pattern of shrubs on a desert plain in Ethiopia. Ecology 49: 744–746.Google Scholar
  4. Braak, C. J. F. ter, 1980. Binary mosaics and point quadrat sampling in ecology. IWIS-TNO A 80 ST 9637, IWIS-TNO, P.O.Box 100, Wageningen.Google Scholar
  5. Cannon, W. A., 1911. The root habits of desert plants. Publ. Carnegie Inst. nr. 131.Google Scholar
  6. Chessel, D., Debouzie, D., Donadieu, P. & Klein, D., 1975. Introduction à l'étude de la structure horizontale en milieu steppique. I. Oecol. Plant. 10: 25–42.Google Scholar
  7. Cliff, A. D. & Ord, J. K., 1981. Spatial processes: Models and applications, Pion, London.Google Scholar
  8. Cormack, R. M., 1979. Spatial aspects of competition between individuals. In: R. M. Cormack & J. K. Ord (eds.), Spatial and temporal analysis in ecology, pp. 151–212. International Cooperative Publishing House, Fairland, Maryland.Google Scholar
  9. Diggle, P. J., 1978. On parameter estimation for spatial point processes. J. Roy. Stat. Soc. B 40: 178–181.Google Scholar
  10. Diggle, P. J., 1979a. Statistical methods for spatial point patterns in ecology. In: R. M. Cormack & J. K. Ord (eds.), Spatial and temporal analysis in ecology, pp. 95–150. International Cooperative Publishing House, Fairland, Maryland.Google Scholar
  11. Diggle, P. J., 1979b. On parameter estimation and goodness-of-fit testing for spatial point patterns. Biometrics 35: 87–101.Google Scholar
  12. Diggle, P. J., Besag, J. & Gleaves, J. T., 1976. Statistical analysis of spatial point patterns by means of distance methods. Biometrics 32: 659–667.Google Scholar
  13. Galiano, E. F., 1982. Pattern detection in plant populations through the analysis of plant-to-all-plants distances. Vegetatio 49: 39–43.Google Scholar
  14. Greig-Smith, P. & Chadwick, M. J., 1965. Data on pattern within plant communities. III. Acacia-Capparis semi-desert scrub in the Sudan. J. Ecol. 53: 465–474.Google Scholar
  15. Gutierrez, J. R. & Fuentes, E. R., 1979. Evidence for intraspecific competition in the Acacia caven (Leguminosae) savanna of Chile. Oecol. Plant. 14: 151–158.Google Scholar
  16. Ihlenfeldt, H.-D., 1971. Some aspects of the biology of dissemination of the Mesembryanthemaceae. In: H. Herre (ed.), The genera of the Mesembryanthemaceae, pp. 28–34. Tafelberg Publ., Cape Town.Google Scholar
  17. King, T. J. & Woodell, S. R. J., 1973. The causes of regular pattern in desert perennials. J. Ecol. 61: 761–765.Google Scholar
  18. McDonough, W. T., 1965. Pattern changes associated with the decline of a species in a desert habitat. Vegetatio 13: 97–101.Google Scholar
  19. Phillips, D. L. & MacMahon, J. A., 1981. Competition and spacing patterns in desert shrubs. J. Ecol. 69: 97–115.Google Scholar
  20. Ripley, B. D., 1977. Modelling spatial patterns. J. Roy. Stat. Soc. B 39: 172–212.Google Scholar
  21. Simberloff, D., 1979. Nearest neighbor assessments of spatial configurations of circles rather than points. Ecology 60: 679–685.Google Scholar
  22. Schulze, R. E. & McGee, O. S., 1978. Climatic indices and classifications in relation to the biogeography of southern Africa. In: M. J. A. Werger (ed.), Biogeography and ecology of southern Africa, pp. 19–52. Junk, The Hague.Google Scholar
  23. Shreve, F., 1942. The desert vegetation of North America. Bot. Rev. 8: 195–246.Google Scholar
  24. Spalding, V. M., 1909. Distribution and movement of desert plants. Publ. Carnegie Inst. nr. 113.Google Scholar
  25. Went, F. W., 1955. The ecology of desert plants. Scient. Amer. 192: 68–75.Google Scholar
  26. Werger, M. J. A., 1978a. The Karoo-Namib Region. In: M. J. A. Werger (ed.), Biogeography and ecology of southern Africa, pp. 231–299. Junk, The Hague.Google Scholar
  27. Werger, M. J. A., 1978b. Biogeographical division in southern Africa. In: M. J. A. Werger (ed.), Biogeography and ecology of southern Africa, pp. 147–170. Junk, The Hague.Google Scholar
  28. Woodell, S. R. J., Mooney, H. A. & Hill, A. J., 1969. The behaviour of Larrea divaricata (creosote bush) in response to rainfall in California. J. Ecol. 57: 37–44.Google Scholar
  29. Yeaton, R. I. & Cody, M. L., 1976. Competition and spacing in plant communities: the northern Mohave Desert. J. Ecol. 64: 689–696.Google Scholar
  30. Yeaton, R. I., Travis, J. & Gilinsky, E., 1977. Competition and spacing in plant communities: the Arizona upland association. J. Ecol. 65: 587–595.Google Scholar

Copyright information

© Dr W. Junk Publishers 1985

Authors and Affiliations

  • I. C. Prentice
    • 1
    • 2
  • M. J. A. Werger
    • 1
  1. 1.Department of Plant EcologyUniversity of UtrechtUtrechtThe Netherlands
  2. 2.Institute of Ecological BotanyUppsala UniversityUppsalaSweden

Personalised recommendations