Journal of Aquatic Ecosystem Health

, Volume 3, Issue 3, pp 227–237 | Cite as

A sentinel monitoring framework for identifying fish population responses to industrial discharges

  • Wade N. Gibbons
  • Kelly R. Munkittriek


We previously proposed a classification scheme to describe the responses of fish populations to anthropogenic stress. The original framework separated impacted populations into five response patterns, but had several limitations and deficiencies, including the subsequent description of additional patterns and the absence a pattern reflecting no detectable response of the population. The response framework has been reorganized based on new information and response patterns described in published literature. The sentinel monitoring framework provides a tool for initial interpretation of adult fish surveys and description of priority areas for subsequent studies to allow identification of the mechanism of impact. Subsequent, focused, follow-up studies are required to identify the stressor(s) once the impact mechanism has been identified. Response pattern separation requires information from the sampled fish population including age structure, energy expenditure and energy storage. The patterns represent characteristic responses to changes in food availability, adult mortality, recruitment failure and metabolic disruption. The framework requires the identification and appropriate sampling of comparable reference sites, but the sentinel monitoring framework has proved to be a useful tool in preliminary trials, and should provide a focal point for cumulative effects studies using fish populations.

Key words

fish population assessment monitoring framework tiered-testing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, M. S. & J. E. Breck, 1990. Bioenergetics. In: C. B. Schreck and P. B. Moyle (eds), Methods for Fish Biology. pp. 389–415. Amer. Fish. Soc. Bethesda, Maryland.Google Scholar
  2. Adams, M. S., W. D. Crumby, M. S. Greeley Jr., L. R. Shugart & C. F. Saylor, 1992. Responses of fish populations and communities to pulp mill effluents: a holistic assessment. Ecotox. Environ. Safety 24: 347–360.Google Scholar
  3. Barnes, M. A., G. Power & R. G. H. Downer, 1984. Stress-related changes in lake whitefish (Coregonus clupeaformis) associated with a hydroelectric control structure. Can. J. Fish. Aquat. Sci. 41: 1528–1533.Google Scholar
  4. Bartell, S. M., 1990. Ecosystem context for estimating stress-induced reductions in fish populations. Amer. Fish. Soc. Symposium 8: 167–182.Google Scholar
  5. Beggs, G. L. & J. M. Gunn, 1986. Response of lake trout (Salvelinus namaycush) and brook trout (S. fontinalis) to surface water acidification in Ontario. Wat. Air Soil Pollut. 30: 711–717.Google Scholar
  6. Black, J. J., E. D. Evans, J. C. Harshbarger & R. F. Ziegel, 1985. Epizootic neoplasms in fishes from a lake polluted by copper mining wastes. J. Nat. Cancer Inst. 69: 915–926.Google Scholar
  7. Burrough, R. J. & C. R. Kennedy, 1979. The occurrence and natural alleviation of stunting in a population of roach, Rutilus rutilus (L.). J. Fish Biol. 15: 93–109.Google Scholar
  8. Colby, P. J., 1984. Appraising the status of fisheries: rehabilitation techniques. In: V. W. Cairns, P. V. Hodson and J. O. Nriagu (eds), Contaminant Effects on Fisheries. Adv. Envir. Sci. Technol. 16: 233–257.Google Scholar
  9. Colby, P. J. & S. J. Nepszy. 1981. Variation among stocks of walleye (Stizostedion vitreum vitreum): management implications. Can. J. Fish Aquat. Sci. 38: 1814–1831.Google Scholar
  10. DeAngelis, D. L., L. W. Lawrence, W. Van Winkle & R. G. Otto, 1990. A critical appraisal of population approaches in assessing fish community health. J. Great Lakes Res. 16: 576–590.Google Scholar
  11. Edwards, C. J., R. A. Ryder & T. R. Marshall, 1990. Using lake trout as a surrogate of ecosystem health for oligotrophic waters of the Great Lakes. J. Great Lakes Res. 16: 591–608.Google Scholar
  12. Erikson, M. O. G. & B. Tengelin, 1987. Short-term effects of liming on perch, Perca fluviatilis populations in acidified lakes in South- west Sweden. Hydrobiologia 146: 187–191.Google Scholar
  13. Evans, D. O., 1978. An overview of the ecology of the lake whitefish, Corgeonus clupeaformis (Mitchill) in Lake Simcoe, Ontario with special reference to water quality and introduction of the rainbow smelt, Osmerus mordax (Mitchill). Ont. Min. Nat. Res. file rept. 132 pp.Google Scholar
  14. Fausch, K. D., J. Lyons, J. R. Karr & P. L. Angermeier, 1990. Fish communities as indicators of environmental degradation. Amer. Fish. Soc. Symposium 8: 123–144.Google Scholar
  15. Handford, P., G. Bell & T. Reimchen, 1977. A gillnet fishery considered as an experiment in artificial selection. J. Fish. Res. Bd. Can. 34: 954–961.Google Scholar
  16. Hanson, J. M. & W. C. Leggett, 1986. Effect of competition between two freshwater fishes on prey consumption and abundance. Can. J. Fish. Aquat. Sci. 43: 1363–1372.Google Scholar
  17. Hassler, T. J., 1969. Biology of the northern pike in Oahe reservoir. 1959 through 1965. U.S. Fish Wildl. Serv. Techn. Paper 29. 13 pp.Google Scholar
  18. Healey, M. C., 1975. Dynamics of exploited whitefish populations and their management with special reference to the Northwest Territories. J. Fish. Res. Bd. Can. 32: 427–448.Google Scholar
  19. Henderson, B. A., 1986. Effects of sea lamprey (Petromyzon marinus) parasitism on the abundance of white sucker (Catostomus commersoni) in South Bay, Lake Huron, J. Appl. Ecol. 23: 381–389.Google Scholar
  20. Hickie, B. E., D. G. Dixon & J. F. Leatherland, 1989. The influence of dietary carbohydrate:lipid ratio on the chronic toxicity of sodium pentachlorophenate to rainbow trout (Salmo gairdneri Richardson). Fish Biochem. Physiol. 6: 175–185.Google Scholar
  21. Jensen, A. L., 1981. Population regulation in lake whitefish, Coregonus clupeaformis (Mitchell). J. Fish. Biol. 19: 557–573.Google Scholar
  22. Martin, N. V., 1951. A study of the lake trout, Salvelinus namaycush, in two Algonquin Park, Ontario, lakes, Trans. Am. Fish. Soc. 81: 111–137.Google Scholar
  23. Martin, N. V., 1970. Long-term effects of diet on the biology of the lake trout and the fishery in Lake Opeongo, Ontario. J. Fish. Res. Bd. Can. 27: 125–146.Google Scholar
  24. McFarlane, G. A. & W. G. Franzin. 1978. Elevated heavy metals: a stress on a population of white sucker, Catostomus commersoni, in Hamell Lake, Saskatchewan. J. Fish. Res. Bd. Can. 25: 963–970.Google Scholar
  25. Mills, K. H., 1985. Responses of lake whitefish (Coregonus clupeaformis) to fertilization of Lake 226, the Experimental Lakes Area. Can. J. Fish. Aquat. Sci. 42: 129–138.Google Scholar
  26. Munkittrick, K. R., 1992. A review and evaluation of study design considerations for site-specifically assessing the health of fish populations. J. Aquat. Eco. Health 1: 283–293.Google Scholar
  27. Munkittrick, K. R. & D. G. Dixon, 1988. Growth, fecundity and energy stores of white sucker (Catostomus commersoni) from lakes containing elevated levels of copper and zinc. Can. J. Fish. Aquat. Sci. 45: 1355–1365.Google Scholar
  28. Munkittrick, K. R. & D. G. Dixon, 1989a. Use of white sucker (Catostomus commersoni) populations to assess the health of aquatic ecosystems exposed to low-level contaminant stress. Can. J. Fish. Aquat. Sci. 46: 1455–1462.Google Scholar
  29. Munkittrick, K. R. & D. G. Dixon. 1989b. An holistic approach to ecosystem health assessment using fish population characteristics. In: M. Munawar, G. Dixon, C. I. Mayfield, T. Reynoldson & M. H. Sadar (eds), Environmental Bioassay Techniques and their Application. Hydrobiologia 188/1889: 122–135.Google Scholar
  30. Munkittrick, K. R. & J. F. Leatherland, 1984. Abnormal pituitary-gonad function in feral populations of goldfish suffering epizootics of an ulcerative disease. J. Fish. Dis. 7: 433–447.Google Scholar
  31. Munkittrick, K. R., C. B. Portt, G. J. Van Der Kraak, I. R. Smith & D. A. Rokosh. 1991a. Impact of bleached kraft mill effluent on population characteristics, liver MFO activity, and serum steroid levels of a Lake Superior white sucker (Catostomus commersoni) population. Can. J. Fish. Aquat. Sci. 48: 1371–1380.Google Scholar
  32. Munkittrick, K. R., P. A. Miller, D. R. Barton & D. G. Dixon, 1991b. Impacts of copper and zinc contamination on macroinvertebrate communities and tissue metal distributions in white sucker. Ecotox. Environ. Saf. 21: 318–326.Google Scholar
  33. Munkittrick, K. R., M. R. Servos, M. E. McMaster, G. J. Van Der Kraak, C. Portt & M. R. van den Heuvel, 1994. Survey of receiving water environmental impacts associated with discharges from pulp mills. II. Gonald size, liver size, hepatic MFO activity and plasma sex steroid levels in white sucker. Environ. Toxicol. Chem. 13(7): 1089–1101.Google Scholar
  34. Muth, K. M. & B. S. Ickes, 1993. Fecundity of walleyes in western Lake Erie, 1966 and 1990–1991. J. Great Lakes Res. 19: 715–719.Google Scholar
  35. Nelson, W. R., 1974. Age, growth and maturity of thirteen species of fish from Lake Oahe during the early years of impoundment. 1963–1968. U.S. Fish Wildl. Serv. Tech. Paper 77, 29 pp.Google Scholar
  36. Persson, L., 1987. The effect of resource availability and distribution on size class interactions in perch, Perca fluviatilis. Oikos 48: 148–160.Google Scholar
  37. Plafkin, J. L., M. T. Barbour, K. D. Porter, S. K. Gross & R. M. Hughes, 1989. Rapid bioassessment protocols for use in streams and rivers: benthic macroinvertebrates and fish. United States Environmental Protection Agency. EPA/444/45-89-001.Google Scholar
  38. Power, G. & J. Gregoire, 1978. Predation by freshwater seals on the fish community of Lower Seal Lake, Quebec. J. Fish. Res. Bd. Can. 35: 844–850.Google Scholar
  39. Rand, G. M., 1958. Behaviour. In: G. M. Rand & S. R. Petrocelli (eds), Fundamentals of Aquatic Toxicology. Methods and Applications pp. 221–263. Hemisphere, Washington, D.C.Google Scholar
  40. Riemers, N., 1958. Conditions of existence, growth and longevity of brook trout in a small, high-altitude lake of the eastern Sierra Nevadas. Calif. Fish. Game 44: 319–333.Google Scholar
  41. Riemers, N., 1979. A history of stunted brook trout populations in an alpine lake: a lifespan of 24 years. Calif. Fish. Game 65: 196–215.Google Scholar
  42. Rosseland, B. O., 1986. Ecological effects of acidification on tertiary consumers. Fish population responses. Wat. Air Soil Pollut. 30: 451–460.Google Scholar
  43. Schneider, J. C. & J. H. Leach, 1977. Walleye (Stizostedion vitreum vitreum) fluctuations in the Great Lakes and possible causes. 1800–1975. J. Fish. Res. Bd. Can. 34: 1878–1889.Google Scholar
  44. Servos, M. R., S. Huestis, D. M. Whittle, G. J. Van Der Kraak & K. R. Munkittrick, 1994. Survey of receiving water environmental impacts associated with discharges from pulp mills. III. Polychlorinated dioxins and furans in muscle and liver of white sucker (Catostomus commersoni). Environ. Toxicol. Chem. 13(7): 1103–1115.Google Scholar
  45. Shuter, B. J., 1990. Population-level indicators of stress. Amer. Fish. Soc. Symposium 8: 145–166.Google Scholar
  46. Swanson, S. M., 1982. Levels and effects of radionuclides in aquatic fauna of the Beaverlodge area (Saskatchewan). Publ. C-806–5-E-82. Sask. Res. Council Saskatoon. 136 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Wade N. Gibbons
    • 1
  • Kelly R. Munkittriek
    • 2
  1. 1.Department of BiologyUniversity of WaterlooWaterlooCanada
  2. 2.Department of Fisheries & OceansGLLFASBurlingtonCanada

Personalised recommendations