Reviews in Fish Biology and Fisheries

, Volume 4, Issue 3, pp 300–325 | Cite as

Appraisal of molecular genetic techniques in fisheries

  • Robert D. Ward
  • Peter M. Grewe
Papers

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allendorf F.W., Espeland D.M., Snow D.T. and Phelps S. (1980) Coexistence of native and introduced rainbow trout in the Kootenai River drainage. Proc. Montana Acad. Sci. 39, 28–36.Google Scholar
  2. Amos B., Schlotterer C. and Tautz D. (1993) Social structure of pilot whales revealed by analytical DNA profiling. Science 260, 670–72.Google Scholar
  3. Arnheim N. (1983) Concerted evolution of multigene families. In Nei M. and Koehn R.K., eds. Evolution of Genes and Proteins. Sunderland, MA: Sinauer, pp. 38–61.Google Scholar
  4. Aspinwall N., McPhail J.D. and Larson A. (1993) A long-term study of hybridization between the peamouth, Mylocheilus caurinus, and the redside shiner, Richardsonius balteatus, at Stave Lake, British Columbia. J. Zool. 71, 550–60.Google Scholar
  5. Avise, J.C. (1987) Identification and interpretation of mitochondrial DNA stocks in marine species. In Kumpf, H.E., ed. Proceedings of the Stock Identification Workshop. US Dept. Commerce, NOAA tech. Mem. NMFS-SEFC-199, pp. 105–36.Google Scholar
  6. Baker C.S., MacCarthy M., Smith P.J., Perry A.P. and Chambers G.K. (1992) DNA fingerprints of orange roughy, Hoplostethus atlanticus: a population comparison. Mar. Biol. 113, 561–7.Google Scholar
  7. Bardakci, F. and Skibinski, D.O.F. (1994) The application of the RAPD technique in tilapia fish: species and strain identification. Heredity (in press).Google Scholar
  8. Bartlett S.E. and Davidson W.S. (1991) Identification of Thunnus tuna species by the polymerase chain reaction and direct sequence analysis of their mitochondrial cytochrome b genes. Can. J. Fish. aquat. Sci. 48, 309–17.Google Scholar
  9. Begun D.J. and Aquadro C.F. (1993) African and North American populations of Drosophila melanogaster are very different at the DNA level. Nature, Lond. 365, 548–50.Google Scholar
  10. Benton M.J. and Guttman S.I. (1992) Allozyme genotype and differential resistance to mercury pollution in the caddisfly, Nectopsyche albida. I. Single locus genotypes. Can. J. Fish. aquat. Sci. 49, 142–6.Google Scholar
  11. Bentzen P. and Wright J.M. (1993) Nucleotide sequence and evolutionary conservation of a minisatellite variable number tandem repeat cloned from Atlantic salmon, Salmo salar. Genome 36, 271–7.Google Scholar
  12. Bentzen P., Brown G.C. and Leggett W.C. (1989) Mitochondrial DNA polymorphism, population structure, and life history variation in the American shad (Alosa sapidissima). Can. J. Fish. aquat. Sci. 46, 1446–54.Google Scholar
  13. Bentzen P., Harris A.S. and Wright J.M. (1991) Cloning of hypervariable minisatellite and simple sequence microsatellite repeats for DNA fingerprinting of important aquacultural species of salmonids and tilapia. In Burke T., Dolf G., Jeffreys A.J. and Wolff R., eds. DNA Finger-printing Approaches and Applications. Basel, Switzerland: Birkhauser Verlag, pp. 243–62.Google Scholar
  14. Bermingham E., Forbes S.H., Friedland K. and Pla C. (1991) Discrimination between Atlantic salmon (Salmo salar) of North American and European origin using restriction analyses of mitochondrial DNA. Can. J. Fish. aquat. Sci. 48, 884–93.Google Scholar
  15. Billington N. and Hebert P.D.N. (1990) Technique for determining mitochondrial DNA markers in blood samples from walleyes. Am. Fish. Soc. Symp. 7, 492–8.Google Scholar
  16. Billington N., Hebert P.D.N. and Ward R.D. (1988) Evidence of introgressive hybridisation in the genus Stizostedion: interspecific transfer of mitochondrial DNA between sauger and walleye. Can. J. Fish. aquat. Sci. 45, 2035–41.Google Scholar
  17. Birky C.W., Fuerst P. and Maruyama T. (1989) Organelle gene diversity under migration, mutation, and drift: equilibrium expectations, approach to equilibrium, effects of heteroplasmic cells, and comparison to nuclear genes. Genetics 121, 613–27.Google Scholar
  18. Birt T.P., Green J.M. and Davidson W.S. (1991) Mitochondrial DNA variation reveals genetically distinct sympatric populations of anadromous and nonanadromous Atlantic salmon, Salmo salar. Can. J. Fish. aquat. Sci. 48, 577–82.Google Scholar
  19. Booth J.D., Street R.J. and Smith P.J. (1990) Systematic status of the rock lobsters Jasus edwardsii from New Zealand and J. novaehollandiae from Australia. N.Z. J. mar. Freshwat. Res. 24, 239–49.Google Scholar
  20. Boulding E.G., Boom J.D.G. and Beckenbach A.T. (1993) Genetic variation in one bottlenecked and two wild populations of the Japanese scallop (Patinopecten yessoensis): empirical parameter estimates from coding regions of mitochondrial DNA. Can. J. Fish. aquat. Sci. 50, 1147–57.Google Scholar
  21. Brenner S., Elgar G., Sandford R., Macrae A., Venkatesh B. and Aparicio S. (1993) Characterization of the pufferfish (Fugu) gnome as a compact model vertebrate genome. Nature, Lond. 366, 265–7.Google Scholar
  22. Brodziak J., Bentley B., Bartley D., Gall G.A.E., Gomulkiewicz R. and Mangel M. (1992) Tests of genetic stock identification using coded wire tagged fish. Can. J. Fish. aquat. Sci. 49, 1507–17.Google Scholar
  23. Brown B.L. and Paynter K.T. (1991) Mitochondrial DNA analysis of native and selectively inbred Chesapeake Bay oysters, Crassostrea virginica. Mar. Biol. 110, 343–52.Google Scholar
  24. Brown G.G., Gadaleta G., Pepe G., Saccone C. and Sbiza E. (1986) Structural conservation and variation in the D-loop containing region of vertebrate mitochondrial DNA. J. mol. Biol. 192, 503–11.Google Scholar
  25. Brown W.M., George M. and Wilson A.C. (1979) Rapid evolution of animal mitochondrial DNA. Proc. natn. Acad. Sci. USA 76, 1967–71.Google Scholar
  26. Bucklin A. and Kann L. (1991) Mitochondrial DNA variation of copepods: markers of species identity and population differentiation in Calanus. Biol. Bull. Mar. Biol. Lab., Woods Hole 181, 357–000.Google Scholar
  27. Buroker N.E. (1983) Genetic differentiation and population structure of the American oyster Crassostrea virginica (Gmelin) in Chesapeake Bay. J. Shellfish Res. 3, 153–67.Google Scholar
  28. Campton D.E. and Johnston J.M. (1985) Electrophoretic evidence for a genetic admixture of native and nonnative rainbow trout in the Yakima River, Washington. Trans. Am. Fish. Soc. 114, 782–93.Google Scholar
  29. Carmichael G.J., Schmidt M.E. and Morizot D.C. (1992) Electrophoretic identification of genetic markers in channel catfish and blue catfish by use of low-risk tissues. Trans. Am. Fish. Soc. 121, 26–35.Google Scholar
  30. Carmichael G.J., Hanson J.N., Schmidt M.E. and Morizot D.C. (1993) Introgression among apache, cutthroat, and rainbow trout in Arizona. Trans. Am. Fish. Soc. 122, 121–30.Google Scholar
  31. Carr S.M., and Marshall H.D. (1991) Detection of intraspecific DNA sequence variation in the mitochondrial cytochrome b gene of Atlantic cod (Gadus morhua) by the polymerase chain reaction. Can. J. Fish. aquat. Sci. 48, 48–52.Google Scholar
  32. Carvalho G.R. and Hauser L. (1994) Molecular genetics and the stock concept in fisheries. Rev. Fish Biol. Fish. 4, 326–50.Google Scholar
  33. Chilcote M.W., Leider S.A. and Loch J.J. (1986) Differential reproductive success of hatchery and wild summer-run steelhead under natural conditions. Trans. Am. Fish. Soc. 115, 726–35.Google Scholar
  34. Chow S. and Inoue S. (1993) Intra-and interspecific restriction fragment length polymorphism in mitochondrial genes of Thunnus tuna species. Bull. Natn. Res. Inst. Far Seas Fish. 30, 229–48.Google Scholar
  35. Chow S., Clarke M.E. and Walsh P.J. (1993) PCR-RFLP analysis on thirteen western Atlantic snappers (subfamily Lutjaninae): a simple method for species and stock identification. Fish. Bull. US 91, 619–27.Google Scholar
  36. Creech S. (1991) An electrophoretic investigation of populations of Atherina boyeri Risso, 1810 and A. presbyter Cuvier, 1829 (Teleostei: Atherinidae): genetic evidence in support of the two species. J. Fish Biol. 39, 807–16.Google Scholar
  37. Cronin M.A., Spearman W.J., Wilmot R.L., Patton J.C. and Bickham J.W. (1993) Mitochondrial DNA variation in chinook (Oncorhynchus tshawytscha) and chum salmon (O. keta) detected by restriction enzyme analysis of polymerase chain reaction (PCR) products. Can. J. Fish. aquat. Sci. 50, 708–15.Google Scholar
  38. Cross T.F. and King J. (1983) Genetic effects of hatchery rearing in Atlantic salmon. Aquaculture 33, 33–40.Google Scholar
  39. Crossland S., Coates D., Grahame J. and Mill P.J. (1993) Use of random amplified polymorphic DNAs (RAPDs) in separating two sibling species of Littorina. Mar. Ecol. Progr. Ser. 96, 301–5.Google Scholar
  40. Crow J.F. (1986) Basic Concepts in Population, Quantitative, and Evolutionary Genetics. New York: Freeman. 000 pp.Google Scholar
  41. Crozier W.W. and Moffett I.J.J. (1989) Amount and distribution of biochemical-genetic variation among wild populations and a hatchery stock of Atlantic salmon, Salmo salar L., from northeast Ireland. J. Fish Biol. 35, 665–77.Google Scholar
  42. Cutler M.G., Bartlett S.E., Hartley S.E. and Davidson W.S. (1991) A polymorphism in the ribosomal DNA genes distinguishes Atlantic salmon (Salmo salar) from North America and Europe. Can. J. Fish. aquat. Sci. 48, 1655–61.Google Scholar
  43. Devlin B., Risch N. and Roeder K. (1990) No excess of homozygosity at loci used for DNA fingerprinting. Science 249, 1416–20.Google Scholar
  44. Devlin R.H., McNeil B.K., Groves T.D. and Donaldson E.M. (1991) Isolation of a Y-chromosomal DNA probe capable of determining genetic sex in chinook salmon (Oncoryhnchus tshawytscha). Can. J. Fish. aquat. Sci. 48, 1606–12.Google Scholar
  45. Dillon R.T. and Manzi J.J. (1987) Hard clam, Mercenaria mercenaria, broodstocks: genetic drift and loss of rare alleles without reduction in heterozygosity. Aquaculture 60, 99–105.Google Scholar
  46. Dinesh K.R., Lim T.M., Chua K.L., Chan W.K. and Phang V.P.E. (1993) RAPD analysis: an efficient method of DNA fingerprinting in fishes. Zool. Sci. 10, 849–54.Google Scholar
  47. Elliott N.G. and Ward R.D. (1992) Enzyme variation in orange roughy, Hoplostethus atlanticus (Teleostei: Trachichthyidae), from southern Australian and New Zealand waters. Aust. J. mar. Freswat. Res. 43, 1561–71.Google Scholar
  48. Elliott N.G. and Ward R.D. (1994) Enzyme variation in jackass morwong, Nemadactylus macropterus (Schneider, 1801) (Teleostei: Cheilodactylidae), from Australian and New Zealand waters. Aust. J. mar. Freshwat. Res. 45, 51–67.Google Scholar
  49. Estoup A., Presa P., Krieg F., Vaiman D. and Guyomard R. (1993) (CT)n and (GT)n microsatellites: a new class of genetic markers for Salmo trutta L. (brown trout). Heredity 71, 488–96.Google Scholar
  50. Ferguson M.M. (1994) Molecular genetics and the impact of aquaculture on fisheries. Rev. Fish Biol. Fish. 4, 351–73.Google Scholar
  51. Ferguson M.M., Danzmann R.G. and Hutchings J.A. (1991) Incongruent estimates of population differentiation among brook charr, Salvelinus fontinalis, from Cape Race, Newfoundland, Canada, based upon allozyme and mitochondrial DNA variation. J. Fish Biol. 39 (Supp. A), 79–85.Google Scholar
  52. Finnerty J.R. and Block B.A. (1992) Direct sequencing of mitochondrial DNA detects highly divergent haplotypes in blue marlin (Makaira nigricans). Mol. mar. Biol. Biotech. 1, 206–14.Google Scholar
  53. Gillespie R.B. and Guttman S.I. (1993) Correlations between water quality and frequencies of allozyme genotypes in spotfin shiner (Notropis spilopteris) populations. Env. Pollut. 81, 147–50.Google Scholar
  54. Gold J.R., Richardson L.R., Furman C. and King T.L. (1993) Mitochondrial DNA and population structure in red drum (Sciaenops ocellatus) from the Gulf of Mexico and Atlantic Ocean. Mar. Biol. 116, 175–85.Google Scholar
  55. Gonzalez-Villasenor I. and Powers D.A. (1990) Mitochondrial DNA restriction site polymorphisms in the teleost Fundulus heteroclitus supports secondary intergradation. Evolution 44, 27–37.Google Scholar
  56. Gosling E.M. (1982) Genetic variability in hatchery-produced Pacific oysters (Crassostrea gigas Thunberg). Aquaculture 26, 273–87.Google Scholar
  57. Grant W.S. and Utter F.M. (1980) Biochemical genetic variation in walleye pollock (Theragra chalcogramma) and population structure in the southeastern Bering Sea and Gulf of Alaska. Can. J. Fish. aquat. Sci. 37, 1093–100.Google Scholar
  58. Grewe, P.M., Krueger, C.C., Marsden, J.E., Aquadro, C.F. and May, B. (1993) Hatchery origins of naturally produced lake trout fry captured in Lake Ontario: temporal and spatial variability based on allozyme and mitochondrial DNA data. Trans. Am. Fish. Soc. (in press).Google Scholar
  59. Grewe, P., Smolenski, A. and Ward, R.D. (1994) Mitochondrial DNA variation in jackass morwong, Nemadactylus macropterus (Teleostei: Cheilodactylidae), from Australian and New Zealand waters. Can. J. Fish. aquat. Sci. (in press).Google Scholar
  60. Gyllensten U. (1985) The genetic structure of fish: differences in the intraspecific distribution of biochemical variation between marine, anadromous, and freshwater species. J. Fish Biol. 26, 691–9.Google Scholar
  61. Hallerman E.M. and Kapuscinski A.R. (1992) Ecological implications of using transgenic fishes in aquaculture. ICES mar. Sci. Symp. 194, 54–66.Google Scholar
  62. Han H.-S., Mannen H., Tsujimura A. and Taniguchi N. (1992) Application of DNA finger-printing to confirmation of clone in ayu. Nippon Suisan Gakkaishi 58, 2027–31.Google Scholar
  63. Hare J.A., Cowen R.K., Zehr J.P., Juanes F. and Day K.H. (1994) Biological and oceanographic insights from larval labrid (Pisces: Labridae) identification using mtDNA sequences. Mar. Biol. 118, 17–24.Google Scholar
  64. Harrell, R.M., Xu, X.L. and Ely, B. (1994) Evidence of introgressive hybridization in Chesapeake Bay Morone. Mol. mar. Biol. Biotech. (in press)Google Scholar
  65. Harris H. (1966) Enzyme polymorphisms in man. Proc. R. Soc. 164B, 298–310.Google Scholar
  66. Harvey W.D. (1990) Electrophoretic techniques in forensics and law enforcement. In Whitmore D.H., ed. Electrophoretic and Isoelectric Focusing Techniques in Fisheries Management. Boca Raton, Fl: CRC Press, pp. 314–21.Google Scholar
  67. Hedgecock D. and Sly F. (1990) Genetic drift and effective sizes of hatchery-propagated stocks of the Pacific oyster, Crassostrea gigas. Aquaculture 88, 21–38.Google Scholar
  68. Hedgecock D., Chow V. and Waples R.S. (1992) Effective population numbers of shellfish broodstocks estimated from temporal variance in allelic frequencies. Aquaculture 108, 215–32.Google Scholar
  69. Hew C. and Fletcher G.L. (eds) (1992) Transgenic Fish. Singapore: World Science Publishing. 000 pp.Google Scholar
  70. Hindar K., Ryman N. and Utter F. (1991) Genetic effects of cultured fish on natural fish populations. Can. J. Fish. aquat. Sci. 48, 945–57.Google Scholar
  71. Hu Y.P., Lutz R.A. and Vrijenhoek R.C. (1992) Electrophoretic identification and genetic analysis of bivalve larvae. Mar. Biol. 113, 227–30.Google Scholar
  72. Huang T., Cottingham R.jun., Ledbetter D. and Zoghbi H. (1992) Genetic mapping of four dinucleotide repeat loci, DXS453, DXS458, DXS454, and DXS424 on the X chromosome using multiplex polymerase chain reaction. Genomics 13, 375–80.Google Scholar
  73. Hughes C.R. and Queller D.C. (1993) Detection of highly polymorphic microsatellite loci in a species with little allozyme polymorphism. Mol. Ecol. 2, 131–7.Google Scholar
  74. Ihssen P.E., Booke H.E., Casselman J.M., McGlade J.M., Payne H.R. and Utter G.M. (1981) Stock identification: materials and methods. Can. J. Fish. aquat. Sci. 38, 1838–55.Google Scholar
  75. Jeffreys A.J., Wilson V. and Thein S.L. (1985a) Hypervariable “minisatellite” regions in human DNA. Nature, Lond. 314, 67–73.Google Scholar
  76. Jeffreys A.J., Wilson V. and Thein S.L. (1985b) Individual specific “fingerprints” of human DNA. Nature, Lond. 316, 76–9.Google Scholar
  77. Jeffreys A.J., Royle N.J., Wilson V. and Wong Z. (1988) Spontaneous mutation rates to new length alleles at tandem-repetitive hypervariable loci in human DNA. Nature, Lond. 332, 278–81.Google Scholar
  78. Karl S.A. and Avise J.C. (1992) Balancing selection at allozyme loci in oysters: implications from nuclear RFLPs. Science 256, 100–102.Google Scholar
  79. Karl S.A., Bowen B.W. and Avise J.C. (1992) Global population structure and male-mediated gene flow in the green turtle (Chelonia mydas): RFLP analyses of anonymous nuclear loci. Genetics 131, 163–73.Google Scholar
  80. Kimura M. and Weiss G.H. (1964) The stepping stone model of population structure and the decrease of genetic correlation with distance. Genetics 49, 561–76.Google Scholar
  81. Kwiatkowski D., Henske E., Weimer K., Ozelius J., Gusella J. and Haines J. (1992) Construction of a GT polymorphism map of human 9q. Genomics 12, 229–40.Google Scholar
  82. Lansman R.A., Shade R.O., Shapira J.F. and Avise J.C. (1981) The use of restriction endonucleases to measure mitochondrial DNA sequence relatedness in natural populations. III. Techniques and potential applications. J. mol. Evol. 17, 214–26.Google Scholar
  83. Lavery S. and Shaklee J.B. (1991) Genetic evidence for separation of two sharks, Carcharhinus limbatus and C. tilstoni, from northern Australia. Mar. Biol. 108, 1–4.Google Scholar
  84. Lavie B., Nevo E. and Zoller Y. (1984) Differential viability of phosphoglucose isomerase allozyme genotypes of marine snails in nonionic detergent and crude oil-surfactant mixtures. Env. Res. 35, 270–76.Google Scholar
  85. Lewontin R.C. and Hubby J.L. (1966) A molecular approach to the study of genic variation in natural populations. II. Amount of variation and degree of heterozygosity in natural populations of Drosophila pseudoobscura. Genetics 54, 595–609.Google Scholar
  86. Ligny W. de (1969) Serological and biochemical studies in fish populations. Oceanogr. mar. Biol. Ann. Rev. 7, 411–513.Google Scholar
  87. McCracken G.F., Parker C.R. and Guffey S.Z. (1993) Genetic differentiation and hybridization between stocked hatchery and native brook trout in Great Smoky Mountains National Park. Trans. Am. Fish. Soc. 122, 533–42.Google Scholar
  88. McGowan C. and Davidson W.S. (1992) Unidirectional natural hybridization between brown trout (Salmo trutta) and Atlantic salmon (Salmo salar) in Newfoundland. Can. J. Fish. aquat. Sci. 49, 1953–8.Google Scholar
  89. Marsden J.E., Krueger C.C. and May B. (1989) Identification of parental origins of naturally produced lake trout fry in Lake Ontario: application of mixed-stock analysis to a second generation. N. Am. J. Fish. Manage. 9, 257–68.Google Scholar
  90. Martin A.P., Humphreys R. and Palumbi S.R. (1992a) Population genetic structure of the armorhead, Pseudopentaceros wheeleri, in the North Pacific Ocean: application of the polymerase chain reaction to fisheries problems. Can. J. Fish. aquat. Sci. 49, 2386–91.Google Scholar
  91. Martin A.P., Naylor G.J.P. and Palumbi S.R. (1992b). Rates of mitochondrial DNA evolution in sharks are slow compared with mammals. Nature, Lond. 357, 153–5.Google Scholar
  92. Masuda Y., Shinohara N., Takahashi Y., Tabeta O. and Matsuura K. (1991) Occurrence of natural hybrid between pufferfishes, Takifugu xanthopterus and T. vermicularis, in Ariake Bay, Kyushu, Japan. Nippon Suisan Gakkaishi 57, 1247–55.Google Scholar
  93. Milner G.B., Teel D.J., Utter F.M. and Winans G.A. (1985) A genetic method of stock identification in mixed populations of Pacific salmon, Oncorhynchus spp. Mar. Fish. Rev. 47, 1–8.Google Scholar
  94. Mitton J.B., Grant M.C. (1984) Associations among protein heterozygosity, growth rate, and developmental homeostasis. A. Rev. Ecol. Syst. 15, 479–99.Google Scholar
  95. Mork J., Solemdal P. and Sundnes G. (1983) Identification of marine fish eggs: a biochemical genetics approach. Can. J. Fish. aquat. Sci. 40, 361–9.Google Scholar
  96. Mulligan T.J., Chapman R.W. and Brown B.L. (1992) Mitochondrial DNA analysis of walleye pollock, Theragra chalcogramma, from the eastern Bering Sea and Shelikof Strait, Gulf of Alaska. Can. J. Fish. aquat. Sci. 49, 319–26.Google Scholar
  97. Musyl M.K. and Keenan C.P. (1992) Population genetics and zoogeography of Australian freshwater golden perch, Macquaria ambigua (Richardson 1845) (Teleostei: Percichthyidae), and elctrophoretic identification of a new species from the Lake Eyre basin. Aust. J. mar. Freshwat. Res. 43, 1585–1601.Google Scholar
  98. Nakamura Y., Leppert M., O'Connell P., Wolff R., Holm T., Culver M., Martin C., Fujimoti E., Hoff M., Kumlin E. and White R. (1987) Variable number of tandem repeat (VNTR) markers for human gene mapping. Science 235, 1616–22.Google Scholar
  99. Nei M. (1973) Analysis of gene diversity in subdivided populations. Proc. Natn. Acad. Sci. USA 70, 3321–3.Google Scholar
  100. Nei M. (1987) Molecular Evolutionary Genetics. New York: Columbia Univ. Press. 000 pp.Google Scholar
  101. Nei M. and Li W.-H. (1979) Mathematical model for studying genetic variation in terms of restriction endonuclease. Proc. Natn. Acad. Sci. USA 76, 5269–73.Google Scholar
  102. Nevo E., Perl T., Beiles A. and Wood D. (1981) Mercury selection of allozyme genotypes in shrimps. Experientia 37, 1152–4.Google Scholar
  103. O'Connell N. and Slatkin M. (1993) High mutation rate loci in a subdivided population. Theor. Pop. Biol. 44, 110–27.Google Scholar
  104. Olson R.R., Runstadler J.A. and Kocher T.D. (1991) Whose larvae? Nature. Lond. 351, 357–8.Google Scholar
  105. Park L.K. and Moran P. (1994) Developments in molecular genetic techniques in fisheries. Rev. Fish Biol. Fish. 4, 272–99.Google Scholar
  106. Perkins D.L., Krueger C.C. and May B. (1993) Heritage brook trout in northeastern USA: genetic variability within and among populations. Trans. Am. Fish. Soc. 122, 515–32.Google Scholar
  107. Philipp D.P. (1991) Genetic implications of introducing Florida largemouth bass, Micropterus salmoides floridanus. Can. J. Fish. aquat. Sci. 48 (Supp. 1), 58–65.Google Scholar
  108. Pogson, G.H., Mesa, K.A. and Boutilier, R.G. (1994) Genetic population structure and gene flow in the Atlantic cod Gadus morhua: a comparison of allozyme and nuclear RFLP loci. Genetics (submitted).Google Scholar
  109. Prodöhl P.A., Taggart J.B. and Ferguson A. (1994) Single locus minisatellite variation in brown trout, Salmo trutta L., populations. In Beaumont A.R., ed. Genetics and Evolution of Aquatic Organisms. London: Chapman and Hall (pp. 263–70).Google Scholar
  110. Reeb C.A. and Avise J.C. (1990) A genetic discontinuity in a continuously distributed species: mitochondrial DNA in the American oyster, Crassostrea virginica. Genetics 124, 397–406.Google Scholar
  111. Rico C., Zadworny D., Kuhnlein U. and FitzGerald G.J. (1993) Characterization of hypervariable microsatellite loci in the threespine stickleback Gasterosteus aculeatus. Mol. Ecol. 2, 271–2.Google Scholar
  112. Robertson A. (1975) Remarks on the Lewontin-Krakauer test. Genetics 80, 396.Google Scholar
  113. Saiki R.K., Gelflan D.H., Stoffel S., Scharf S.J., Higuchi R., Horn G.T., Mullis K.B. and Ehrlich H.A. (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239, 487–91.Google Scholar
  114. Saunders N.C., Kessler L.G. and Avise J.C. (1986) Genetic variation and geographic differentiation in mitochondrial DNA of the horseshoe crab, Limulus polyphemus. Genetics 112, 613–27.Google Scholar
  115. Schierwater B. and Ender A. (1993) Different thermostable DNA polymerases may amplify different RAPD products. Nucl. Acids Res. 21, 4647–8.Google Scholar
  116. Scoles D.R. and Graves J.E. (1993) Genetic analysis of the population structure of yellowfin tuna, Thunnus albacares, from the Pacific Ocean. Fish. Bull. US 91, 690–98.Google Scholar
  117. Seeb, J.E., Kruse, G.H., Seeb, L.W. and Weck, R.G. (1990) Genetic structure of red king crab populations in Alaska facilitates enforcement of fishing regulations. Alaska Sea Grant Coll. Prog. Report 90-04, 491–502.Google Scholar
  118. Seeb L.W. and Kendall A.W.jun. (1991) Allozyme polymorphisms permit the identification of larval and juvenile rockfishes of the genus Sebastes. Env. Biol. Fishes 30, 191–201.Google Scholar
  119. Seeb L.W., Seeb J.E. and Polovina J.J. (1990) Genetic variation in highly exploited spiny lobster Panulirus marginatus populations from the Hawaiian archipelago. Fish. Bull. US 88, 713–18.Google Scholar
  120. Shaklee, J.B. and Keenan, C.P. (1986) A Practical Laboratory Guide to the Techniques and Methodology of Electrophoresis and its Application to Fish Fillet Identification. Hobart, Australia: CSIRO Mar. Lab. rep. 177, 000 pp.Google Scholar
  121. Shaklee J.B. and Phelps S.R. (1990) Operation of a large-scale, multiagency program for genetic stock identification. Am. Fish. Soc. Symp. 7, 817–30.Google Scholar
  122. Shaklee J.B., Tamaru C.S. and Waples R.S. (1982) Speciation and evolution of marine fishes studied by the electrophoretic analysis of proteins. Pacific Sci. 36, 141–57.Google Scholar
  123. Sick K. (1961) Haemoglobin polymorphism in fishes. Nature, Lond. 192, 894–6.Google Scholar
  124. Sidell B.D., Otto R.G. and Powers D.A. (1978) A biochemical method for distinction of striped bass and white perch larvae. Copeia 1978, 340–3.Google Scholar
  125. Silberman J.D. and Walsh P.J. (1992) Species identification of spiny lobster phyllosome larvae via ribosomal DNA analysis. Mol. mar. Biol. Biotech. 1, 195–205.Google Scholar
  126. Skibinski D.O.F. (1994) The potential of DNA techniques in the population and evolutionary genetics of aquatic invertebrates. In Beaumont A.R., ed. Genetics and Evolution of Aquatic Organisms. London: Chapman and Hall, pp. 177–99.Google Scholar
  127. Slatkin M. (1985) Rare alleles as indicators of gene flow. Evolution 39, 53–65.Google Scholar
  128. Smith P.J. and Conroy A.M. (1992) Loss of genetic variation in hatchery-produced abalone, Haliotis iris. N.Z. J. mar. Freshwat. Res. 26, 81–5.Google Scholar
  129. Smith P.J. and Crossland J. (1977) Identification of larvae of snapper Chrysophrys auratus Forster by electrophoretic separation of tissue enzymes. N.Z. J. mar. Freshwat. Res. 11, 795–8.Google Scholar
  130. Smith P.J. and Robertson D.A. (1981) Genetic evidence for two species of sprat (Sprattus) in New Zealand waters. Mar Biol. 62, 227–33.Google Scholar
  131. Smith P.J., Wood B.A. and Benson P.G. (1979) Electrophoretic and meristic separation of blue maomao and sweep. N.Z. J. mar. Freshwat. Res. 13, 549–51.Google Scholar
  132. Smith P.J., Mattlin R.H., Roeleveld M.A. and Okutani T. (1987) Arrow squids of the genus Nototodarus in New Zealand waters: systematics, biology, and fisheries. N.Z. J. mar. Freshwat. Res. 21, 315–26.Google Scholar
  133. Smith P.J., Francis R.I.C.C. and McVeagh M. (1990) Loss of genetic diversity due to fishing pressure. Fish. Res. 10, 309–16.Google Scholar
  134. Smolenski A.J., Ovenden J.R. and White R.W.G. (1993) Evidence of stock separation in southern hemisphere orange roughy (Hoplostethus atlanticus, Trachichthyidae) from restriction-enzyme analysis of mitochondrial DNA. Mar. Biol. 116, 219–30.Google Scholar
  135. Ståhl G. (1983) Differences in the amount and distribution of genetic variation between natural populations and hatchery stocks of Atlantic salmon. Aquaculture 33, 23–32.Google Scholar
  136. Ståhl G. (1987) Genetic population structure of Atlantic salmon. In Ryman N. and Utter F., eds. Population Genetics & Fishery Management. Seattle: Univ. Washington Press, pp. 121–40.Google Scholar
  137. Stevens T.A., Withler R.E., Goh S.H. and Beacham T.D. (1993) A new multilocus probe for DNA fingerprinting in chinook salmon (Oncorhynchus tshawytscha), and comparisons with a single-locus probe. Can. J. Fish. aquat. Sci. 50, 1559–67.Google Scholar
  138. Taggart J.B. and Ferguson A. (1986) Electrophoretic evaluation of a supplemental stocking programme for brown trout, Salmo trutta L. Aquacult. Fish. Manage. 17, 155–62.Google Scholar
  139. Taggart J.B. and Ferguson A. (1990) Hypervariable minisatellite DNA single locus probes for the Atlantic salmon, Salmo salar L. J. Fish Biol. 37, 991–3.Google Scholar
  140. Tautz D. (1989) Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucl. Acids Res. 17, 6463–71.Google Scholar
  141. Thorpe J.P. (1982) The molecular clock hypothesis: biochemical evolution, genetic differentiation, and systematics. A. Rev. Ecol. Syst. 13, 139–68.Google Scholar
  142. Utter F.M. (1991) Biochemical genetics and fishery management: an historical perspective. J. Fish Biol. 39 (Supp. A), 1–20.Google Scholar
  143. Utter F.M. and Ryman N. (1993) Genetic markets and mixed stock fisheries. Fisheries 18, 11–21.Google Scholar
  144. Utter F.M., Waples R.S. and Teel D.J. (1992) Genetic isolation of previously indistinguishable chinook salmon populations of the Snake and Klamath Rivers: limitations of negative data. Fish. Bull. US 90, 770–77.Google Scholar
  145. Verspoor E. (1988) Reduced genetic variability in first-generation hatchery populations of Atlantic salmon (Salmo salar). Can. J. Fish. aquat. Sci. 45, 1686–90.Google Scholar
  146. Verspoor E. and Hammar J. (1991) Introgressive hybridization in fishes: the biochemical evidence. J. Fish Biol. 39 (Supp. A), 309–34.Google Scholar
  147. Vrijenhoek R.C., Ford S.E. and Haskins H.H. (1990) Maintenance of heterozygosity during selective breeding of oysters for resistance to MSX disease. J. Hered. 81, 418–23.Google Scholar
  148. Waldman J.R. and Wirgin I. (1994) Use of DNA analyses in the management of natural fish populations. In Garte S.J., ed. Molecular Environmental Biology. Boca Raton, FL: CRC Press, pp. 29–64.Google Scholar
  149. Waples R.S. (1991a) Pacific salmon, Oncorhynchus spp., and the definition of “species” under the Endangered Species Act, Mar. Fish. Rev. 53, 11–22.Google Scholar
  150. Waples R.S. (1991b) Genetic interactions between hatchery and wild salmonids: lessons from the Pacific northwest. Can. J. Fish. aquat. Sci. 48 (Supp. 1), 124–33.Google Scholar
  151. Ward, R.D. and Elliott, N.G. (1993) Heterozygosity and morphological variability in the orange roughy, Hoplostethus atlanticus (Teleostei: Trachichthyidae). Can. J. Fish. aquat. Sci. (in press).Google Scholar
  152. Ward R.D., Billington N. and Hebert P.D.N. (1989) Comparison of allozyme and mitochondrial DNA variation in populations of walleye, Stizostedion vitreum. Can. J. Fish. aquat. Sci. 46, 2074–84.Google Scholar
  153. Ward, R.D., Elliott, N.G., Grewe, P. and Smolenski, A. (1994a) Allozyme and mitochondrial DNA variation in yellowfin tuna (Thunnus albacares) from the Pacific Ocean. Mar. Biol. (in press).Google Scholar
  154. Ward, R.D., Woodwark, M. and Skibinski, D.O.F. (1994b) A comparison of genetic diversity levels in marine, freshwater and anadromous fish. J. Fish Biol. (in press).Google Scholar
  155. Whitmore D.H., Thai T.H. and Craft C.M. (1992) Gene amplification permits minimally invasive analysis of fish mitochondrial DNA. Trans. Am. Fish. Soc. 121, 170–77.Google Scholar
  156. Wilde G.R. and Echelle A.A. (1992) Genetic status of Pecos pupfish populations after establishment of a hybrid swarm involving an introduced congener. Trans. Am. Fish. Soc. 121, 277–86.Google Scholar
  157. Williams J.G.K., Hanafey M.K., Rafalski J.A. and Tingey S.V. (1993) Genetic analysis using random amplified polymorphic DNA markers. In Wu R., ed. Methods in Enzymology, Vol. 218, Recombinant DNA. San Diego: Academic Press, pp. 704–40.Google Scholar
  158. Wilson A.C., Cann R.L., Carr S., George M.jun., Gyllensten U.B., Helm-Bychowski K.M., Higuchi R.G., Palumbi S.R., Prager E.M., Sage R.D. and Stoneking M. (1985) Mitochondrial DNA and two perspectives on evolutionary genetics. Biol. J. Linn. Soc. 26, 375–400.Google Scholar
  159. Wirgin I.I. and Maceda L. (1991) Development and use of striped bass-specific RFLP probes. J. Fish Biol. 39 (Supp. A), 159–67.Google Scholar
  160. Wirgin I.I., Grunwald C., Garte S.J. and Mesing C. (1991) Use of DNA fingerprinting in the identification and management of a striped bass population in the southeastern United States. Trans. Am. Fish. Soc. 120, 273–82.Google Scholar
  161. Wirgin I.I., Maceda L. and Mesing C. (1992) Use of cellular oncogene probes to identify Morone hybrids. J. Hered. 83, 375–82.Google Scholar
  162. Wright S. (1943) Isolation by distance. Genetics 28, 114–38.Google Scholar
  163. Yamaoka K., Nishiyama M. and Taniguchi N. (1989) Genetic divergence in lizardfishes of the genus Saurida from southern Japan. Jap. J. Ichthyol. 36, 208–19.Google Scholar
  164. Yamaoka K., Han H.-S. and Taniguchi N. (1992) Genetic dimorphism in Pseudocaranx dentex from Tosa Bay, Japan. Nippon Suisan Gakkaishi 58, 39–44.Google Scholar
  165. Yeatman J. and Benzie J.A.H. (1994) Genetic structure and distribution of Photololigo spp. in Australia. Mar. Biol. 118, 79–87.Google Scholar
  166. Youngson A.F., Knox D. and Johnstone R. (1992) Wild adult hybrids of Salmo salar L. and Salmo trutta L. J. Fish Biol. 40, 817–20.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • Robert D. Ward
    • 1
  • Peter M. Grewe
    • 1
  1. 1.CSIRO Division of FisheriesHobartAustralia

Personalised recommendations