Reviews in Fish Biology and Fisheries

, Volume 1, Issue 1, pp 3–22 | Cite as

Solitary chemosensory cells — taste, common chemical sense or what?

  • Kurt Kotrschal
Article

Summary

Secondary solitary chemosensory cells (SCCs) occur scattered within the epidermis of lampreys, teleosts and ranid tadpoles. Counts in representative telost species revealed that SCC's outnumber chemosensory cells organized in taste buds. Therefore, SCCs may be considered the structural substrate of a basic and probably important vertebrate chemosense. However, detailed information on structure, innervation and function is only available from specialized fins in a few teleost species, where SCCs are sufficiently concentrated. The foremost research model has been the anterior dorsal fin (ADF) in rocklings, which contains millions of SCCs but no other specialized chemosensory elements. It has been shown that these ADF-SCCs are innervated from the recurrent facial nerve. Electrophysiological recordings revealed that there is virtually no overlap in stimulus spectrum between the ADF-SCCs and pelvic fin taste buds; SCC responses could only be triggered by dilutions of heterospecific fish body mucus. Results of behavioural experiments indicate that fish mucus is indeed a relevant stimulus. Therefore it is hypothesized that the biological role of the ADF-SCCs is predator avoidance rather than search for food. Whether these findings are valid for rockings only, or can be generalized for the scattered SCC systems in more than 20000 species of fish and in some amphibians, remains an open question. Further investigations on the function and biological roles of the SCC chemosense will be crucially important to improve our understanding of sensory perception and its evolution in aquatic vertebrates.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atema, J. (1971) Structures and functions of the sense of taste in catfish (Ictalurus natalis). Brain Behav. Evolut. 4, 273–94.Google Scholar
  2. Atema, J. (1987) Aquatic and terrestrial chemoreceptor organs: morphological and physiological design for interfacing with chemical stimuli. In Dejours, P., Bolis, L., Taylor, C.R. and Weibel, E.R., eds. Terrestrial Versus Aquatic Life: Contrasts in Designs and Functions. Fidia Res. Ser. Liviana Press, pp. 303–16.Google Scholar
  3. Atema, J. (1988) Distribution of chemical stimuli. In Atema, J., Fay, R.R., Popper, A.N. and Tavolga, W.N., eds Sensory Biology of Aquatic Animals, NY: Springer-Verlag, pp. 29–56.Google Scholar
  4. Baatrup, E. (1981) Primary sensory cells in the skin of Amphioxus (Branchiostoma lanceolatum (P)). Acta zool., Stockh. 62, 147–57.Google Scholar
  5. Baatrup, E. (1983a) Ciliated receptors in the pharyngeal terminal buds of larval Lampetra planeri (Bloch) (Cyclostomata). Acta zool., Stockh. 64, 67–75.Google Scholar
  6. Baatrup, E. (1983b) Terminal buds in the branchial tube of the brook lamprey (Lampetra planeri (Bloch)) — putative respiratory monitors. Acta zool., Stockh. 64, 139–47.Google Scholar
  7. Baatrup, E. (1984a) Physiological studies on the pharyngeal terminal buds in the larval brook lamprey, Lampetra planeri (Bloch). Chem. Senses. 10, 549–58.Google Scholar
  8. Baatrup, E. (1984b) The sense of taste in lamprey. PhD thesis, Univ. Aarhus, Denmark, English summary, 15 pp.Google Scholar
  9. Baatrup, E. (1985) Physiological studies in the pharyngeal terminal buds in the larval brook lamprey, Lampetra planeri (Bloch.) Chem. Senses 10, 549–58.Google Scholar
  10. Baatrup, E. and Doving, K.B. (1985) Physiological studies on solitary receptors of the oral disc papillae in the adult brook lamprey, Lampetra planeri (Bloch). Chem. Senses 10, 559–66.Google Scholar
  11. Bannister, L.H. (1965) The fine structure of the olfactory surface of teleostean fishes. Q. J. microsc. Sci. 106, 333–42.Google Scholar
  12. Bardach, J.E. (1967) The chemical senses and food intake in the lower vertebrates. In Kare, M.R. and Maller, O., eds. The Chemical Senses and Nutrition. Baltimore, MD: John Hopkins University Press, pp. 19–43.Google Scholar
  13. Bardach, J.E. and Atema, J. (1971) The sense of taste in fishes. In Beidler, L.M., ed. Handbook of Sensory Physiology IV, 2. NY: Springer, pp. 293–336.Google Scholar
  14. Bardach, J.E., Fujiya, M. and Holl, A. (1967) Investigation of external chemoreceptors of fishes. In Hayashi, T., ed. Olfaction and Taste, 2. Oxford: Pergamon Press, pp. 647–65.Google Scholar
  15. Berti, R., Verrosi, R. and Ercolini, A. (1989) Locomotory response of Phreatichthys andruzzi Vinciguerra (Pisces, Cyprinidae) to chemical signals of conspecifics and closely related species. Experientia 45, 205–7.Google Scholar
  16. Bogoljubsky, S. (1908) Zur Kenntnis der Dorsalflosse bei Motella tricirrata. Z. wiss. Zool. Abt. A 90, 327–33.Google Scholar
  17. Bone, Q. and Best, A. (1978) Ciliated sensory cells in amphioxus (Branchiostoma). J. mar. biol. Ass. U.K. 58, 479–86.Google Scholar
  18. Buddenbrock, W.von (1952) Vergleichende Physiologie, Bd. I., Sinnesphysiologie, Basel: Birkenhäuser, pp. 396–7.Google Scholar
  19. Bullock, A.M. and Roberts, R.J. (1974) The dermatology of marine teleost fish. I. The normal integument. Oceanogr. Mar. Biol. Ann. Rev. 13, 383–411.Google Scholar
  20. Caprio, J. (1988) Peripheral filters and chemoreceptor cells in fishes. In Atema, J., Fay, R.R., Popper, A.N. and Tavolga, W.N., eds. Sensory Biology of Aquatic Animals, NY: Springer-Verlag, pp. 313–38.Google Scholar
  21. Carr, R.R. (1988) The molecular nature of chemical stimuli in the aquatic environment. In Atema, J., Fay, R.R., Popper, A.N. and Tavolga, W.N., eds. Sensory Biology of Aquatic Animals, NY: Springer-Verlag, pp. 3–27.Google Scholar
  22. Casterline, J., Merrill, C., Voigt, R. and Atema, J. (1990) Response reliability of chemoreceptorGoogle Scholar
  23. Connes, R., Granie-Prie, M., Diaz, J.P. And Paris, J. (1988) Ultrastructure des bourgeons du gout du teleosteen marin Diencentrarchus labrax L. Can. J. Zool. 66, 2133–42.Google Scholar
  24. Couch, J. (1864) A History of the Fishes of the British Islands. Vol. III. London: Groombridge pp. 320.Google Scholar
  25. Davenport, D.E. and Caprio, C. (1982) Taste and tactile recordings from the ramus recurrens facialis innervating flank taste buds in the catfish. J. comp. Physiol. 147, 217–29.Google Scholar
  26. Dawson, A.B. (1934) The occurrence of scattered hair-cell other than typical neuromasts in the lateral-line canal system of the catfish, Ameiurus nebulosus. Anat. Rec. 60, 87–92.Google Scholar
  27. Delay, R.J. and Roper, S.D. (1988) Ultrastructure of taste cells and synapses in the mudpuppy Necturus maculosus. J. comp. Neurol. 276, 268–80.Google Scholar
  28. Demski, L.S. and Schwanzel-Fukuda, M. (eds) (1987) The terminal nerve (Nervus terminalis) structure, function and evolution. Ann. N. Y. Acad. Sci. 519, 469.Google Scholar
  29. d'Evant, T. (1903) L'epitelio sensitivo dei raggim digitali delle trygle. Morfologia ed istologia. G. Ass. napol. Med. Nat. 13, 3–29.Google Scholar
  30. Dionne, V.E. (1990) Excitatory and inhibitory responses induced by amino acids in isolated mudpuppy olfactory receptor neurons. ACHEMS-Abstract No. 50, 12th Ann. Meeting Ass. Chemorec. Sci Sarasota, FL, 18–22 April 1990.Google Scholar
  31. Finger, T.E. (1982) Somatotopy of the representation of the pectoral fin and free fin rays in the spinal cord of the sea robin, Prionotus carolinus. Biol. Bull. mar. biol. Lab., Woods Hole 163, 154–61.Google Scholar
  32. Finger, T.E. (1988) Organization of the chemosensory systems within the brains of bony fishes. In Atema, J., Fay, R.R., Popper, A.N. and Tavolga, W.N., eds. Sensory Biology of Aquatic Animals, NY: Springer-Verlag, pp. 339–63.Google Scholar
  33. Finger, T.E., Getchell, M.L., Getchell, T.V. and Kinnamon, J.C. (1990) Affector and effector functions of peptidergic innervation of the nasal cavity. In Green, B.G., Russell, J.R. and Kare, M.R., eds. Chemical Senses. Vol. 2 Irritation. NY: Marcel Dekker, pp. 1–20.Google Scholar
  34. Fox, H., Lane, B. and Whitear, M. (1980) Sensory nerve endings and receptors in fish and amphibians. In Spearman, R.I.C. and Riley, P.A., eds. The Skin of Vertebrates. Linn. Soc. Symp. Ser. 9, 271–81 and 5 plates.Google Scholar
  35. Franz, V. (1923) Haut, Sinnesorgane und Nervensystem der Akranier. Jenaische Zeitschrift für Naturwissenschaft 59, 401–526.Google Scholar
  36. Freihofer, W.C. (1963) Patterns of the ramus lateralis accessorius and their systematic significance in teleostean fish. Stanford Ichthyol. Bull. 8, 1–189.Google Scholar
  37. Frisch, K.von (1926) Vergleichende Physiologie des Geruchs- und Geschmackssinnes, Chemoreception. Handb. d. norm. u. pathol. Physiol. 11, 203–39.Google Scholar
  38. Frisch, K.von (1938) Zur Psychologie des Fisch-Schwarmes. Naturwissenschaften 26, 601–6.Google Scholar
  39. Frisch, K.von (1941) Über einen Schreckstoff der Fischhaut und seine biologische Bedeutung. Z. vergl. Physiol. 29, 46–145.CrossRefGoogle Scholar
  40. Georgieva, V., Patzner, R.A. and Adam, H. (1979) Transmissions-und rasterelektronen-mikroskopische Untersuchungen an den Sinnesknospen der Tentakel von Myxine glutinosa L. (Cyclostomata). Zool. Scripta. 8, 61–7.Google Scholar
  41. Getchell, T.V. and Getchell, M.L. (1987) Peripheral mechanisms of olfaction: biochemistry and neurophysiology. In Finger, T.E. and Silver, W.L., eds. Neurobiology of Taste and Smell. NY: Wiley, pp. 91–124.Google Scholar
  42. Gomahr, A., Kotrschal, K. and Goldschmid, A. (1988) Die chemosensorischen Zellen in der Haut bei den heimischen Karpfenfischen (Teleostei, Cyprinidae): Geschmacksknospen und freie Sinneszellen. Öst. Fisch. 41, 241–53.Google Scholar
  43. Gomahr, A., Palzenberger, M. and Kotrschal, K. (1991) Density and distribution of external taste buds in cyprinids (Cyprinidae, Teleostei). A quantitative study. Env. Biol. Fishes. (in press).Google Scholar
  44. Herrick, C.J. (1899) The cranial and first spinal nerves of Menidia. A contribution upon the nerve components of the bony fishes. J. comp. Neurol. 9, 153–455.Google Scholar
  45. Jakubowski, M. and Whitear, M. (1986) Ultrastructure of taste buds in fishes. Folia Histochem. Cytobiol. 24, 310–11.Google Scholar
  46. Jakubowski, M. and Whitear, M. (1990) Comparative morphology and cytology of taste buds in teleosts. Z. Mikrosk,-anat. Forsch. 104, 529–60.Google Scholar
  47. Kanwal, J.S. and Caprio, J. (1988) Overlapping taste and tactile maps of the oropharynx in the vagal lobe of the channel catfish, Ictalurus punctatus. J. Neurobiol. 19, 211–22.PubMedGoogle Scholar
  48. Kinnamon, J.C. (1987) Organization and innervation of taste buds. In Finger, T.E. and Silver, W.L., eds. Neurobiology of Taste and Smell. NY: Wiley, pp. 277–97.Google Scholar
  49. Kinnamon, S.C. (1988) Taste transduction: a diversity of mechanisms. Trends Neurosci. 11, 491–6.CrossRefPubMedGoogle Scholar
  50. Kinnamon, S.C., Cummings, T.A. and Roper, S.D. (1988) Isolation of single taste cells from lingual epithelium. Chem. Senses 13, 355–66.Google Scholar
  51. Kiyohara, S., Yamashita, S. and Kitoh, J. (1980) Distribution of taste buds on the lips and inside the mouth in the minnow, Pseudorasbora parva. Physiol. Behav. 24, 1143–7.CrossRefPubMedGoogle Scholar
  52. Kohbara, J., Wegert, S. and Caprio, J. (1990) Two types of arginine-best taste units in the channel catfish. ACHEMS-Abstract No. 211, 12th Ann, Meeting Ass. Chemorec. Sci. Sarasota, FL, 18–22 April 1990.Google Scholar
  53. Kölliker, A. (1886) Histologische Studien an Batrachierlarven. Z. wiss. Zool. 43, 1–40.Google Scholar
  54. Kotrschal, K. (1992) Quantitative electron microscopy of solitary chemoreceptor cells in cyprinids and other teleosts Env. Biol. Fishes (in press).Google Scholar
  55. Kotrschal, K. and Whitear, M. (1988) Chemosensory anterior dorsal fin in rocklings (Gaidropsarus and Ciliata, Teleostei, Gadidae): somatotopic representation of the Ramus recurrens facialis as revealed by transganglionic transport of HRP. J. comp. Neurol. 268, 109–20.PubMedGoogle Scholar
  56. Kotrschal, K., Whitear, M. and Adam, H. (1984) Morphology and histology of the anterior dorsal fin of Gaidropsarus mediterraneus (Pisces, Teleostei), a specialized sensory organ. Zoomorphology 104, 365–72.CrossRefGoogle Scholar
  57. Kotrschal, K., Goldschmid, A., Adam, H. and Whitear, M. (1985) The first dorsal fin of Gaidropsarus mediterraneus (Pisces, Teleostei), a specialized chemosensory organ. In Duncker, H. and Fleischer, E., eds. Vertebrate Morphology. Fortschr. Zool. Suppl. 30, Stuttgart: G. Fischer-Verlag, pp. 727–30.Google Scholar
  58. Kotrschal, K., Peters, R. and Atema, J. (1989) A novel chemosensory system in fish: do rocklings (Ciliata mustela, Gadidae) use their solitary chemoreceptor cells as fish detectors? Biol. Bull. mar. biol. Lab., Woods Hole 177, 328.Google Scholar
  59. Kotrschal, K., Kinnamon, J.C. and Royer, S.M. (1990) High voltage electron microscopy and 3-D reconstruction of solitary chemosensory cells and DiI labelling of primary afferent nerve fibres. Proc. XIIth Int. Congr. Electron Microsc. San Francisco: San Francisco Press, pp. 412–13.Google Scholar
  60. Lane, E.B. (1977) Structural aspects of skin sensitivity in the catfish, Ictalurus. PhD thesis, Univ. London. 145 pp.Google Scholar
  61. Lane, E.B. and Whitear, M. (1982) Sensory structures on the surface of fish skin. I. Putative chemoreceptors. Zool. J. Linn. Soc. 74, 141–51.Google Scholar
  62. Lawrence, B.J. and Smith, R.J.F. (1989) Behavioral response of solitary fathead minnows, Pimephales promelas, to alarm substance. J. Chem. Eco. 15, 209–19.Google Scholar
  63. Leydig, F. (1851) Über die Haut einiger Süßwasserfische. Z. wiss. Zool. 3, 1–12.Google Scholar
  64. Marui, T. and Caprio, J. (1982) Electrophysiological evidence for the topographical arrangement of taste and tactile neurons in the facial lobe of the channel catfish. Brain Res. 231, 185–219.CrossRefPubMedGoogle Scholar
  65. Michel, W.C. and Ache, B.W. (1990) Odor-activated K+ conductance inhibits lobster olfactory receptor cells. ACHEMS-Abstract No. 49, 12th Ann. Meeting Ass. Chemorec. Sci. Sarasota, FL, 18–22 April 1990.Google Scholar
  66. Meyer, M. (1962) Kegel- und andere Sonderzellen der larvalen Epidermis von Froschlurchen. Z. mikrosk.-anat. Forsch. 68, 79–131.PubMedGoogle Scholar
  67. Moore, P. and Atema, A. (1988) A model of temporal filter in chemoreception to extract directional information from a turbulent odor plume.. Biol. Bull. mar. biol. Lab., Woods Hole 174, 355–63.Google Scholar
  68. Morrill, A.D. (1895) The pectoral appendages of Prionotus and their innervation. J. Morphol. 11, 177–92.Google Scholar
  69. Okubo, A. (1980) Diffusion and Ecological Problems: Mathematical Models. Berlin, etc.: Springer-Verlag. 245 pp.Google Scholar
  70. Parker, G.H. (1912) The relation of smell, taste and the common chemical sense in vertebrates. J. Acad, nat. sci., Philad. 15, 219–34.Google Scholar
  71. Peters, R.C., VanSteenderen, G.W. and Kotrschal, K. (1987) A chemoreceptive function for the anterior dorsal fin in rocklings (Gaidropsarus and Ciliata: Teleostei: Gadidae): electrophysiological evidence. J. mar. biol. Ass. U.K. 67, 819–23.Google Scholar
  72. Peters, R.C., Kotrschal, K., Krautgartner, W.-D and Atema, J. (1989) A novel chemosensory system in fish: electrophysiological evidence for mucus detection by solitary chemoreceptor cells in rocklings (Ciliata mustela, Gadidae). Biol. Bull. mar. biol. Lab., Woods Hole 177, 329.Google Scholar
  73. Peters, R.C., Kotrschal, K. and Krautgartner, W.-D. (1991) Solitary chemoreceptor cells of Ciliata mustela (Gadidae, Teleostei) are tuned to mucoid stimuli. Chem. Senses (in press).Google Scholar
  74. Pfeiffer, W. (1977) The distribution of fright reaction and alarm substance cells in fishes. Copeia 4, 653–5.Google Scholar
  75. Pitcher, T.J. (ed.) (1986) The Behaviour of Teleost Fishes. London: Croom Helm, 553 pp.Google Scholar
  76. Reutter, K. (1986) Chemoreceptors. In Bereiter-Hahn, J., Matoltsy, A.G. and Richards, K.S., eds. Biology of the Integument 2 Vertebrates. Berlin etc.: Springer-Verlag, pp. 586–604.Google Scholar
  77. Roper, S.D. (1989) The cell biology of vertebrate taste receptors. A. Rev. Neurosci. 12, 329–53.CrossRefGoogle Scholar
  78. Saglio, P. and Blanc, J.M. (1989) Intraspecific chemocommunication in immature goldfish, Carassius auratus L.: attraction in olfactometer to free amino acid fractions from skin extracts. Biol. Behav. 14, 132–47.Google Scholar
  79. Scharrer, E. (1935) Die Empfindlichkeit der freien Flossenstrahlen des Knurrhahns (Trigla) für chemische Reize, Z. vergl. Physiol. 22, 145–54.Google Scholar
  80. Schreiner, K.E. (1918) Zur Kenntnis der Zellgranula. Untersuchungen über den feineren Bau der Haut von Myxine glutinosa. I. Teil. Zweite Hälfte. Arch. mikrosk. Anat. Entwicklungsgesch. 92, 1–63.Google Scholar
  81. Schulte, E. and Holl, A. (1972) Feinbau der Kopftentakel und ihrer Sinnesorgane bei Blennius tentacularis (Pisces, Blenniiformes). Mar. Biol. 12, 67–80.Google Scholar
  82. Schulte, E. and Riehl, R. (1977) Electronenmilroskopische Untersuchungen an den Oralcirren und der Haut von Branchiostoma lanceolatum. Helgoländer wiss Meeresunters. 29, 337–57.Google Scholar
  83. Sibbing, F.A. and Uribe, R. (1985) Regional specializations in the oropharyngeal wall and food processing in the carp (Cyprinus carpio L.). Neth. J. Zool. 35, 377–422.Google Scholar
  84. Silver, W.L. (1987) The common chemical sense. In Silver, T.E. and Silver, W.L., eds Neurobiology of Taste and Smell. NY: Wiley, pp. 65–87.Google Scholar
  85. Silver, W.L. and Finger, T.E. (1984) Electrophysiological examination of a non-olfactory, nongustatory chemosense in the searobin, Prionotus carolinus. J. comp. Physiol. A 154, 167–74.Google Scholar
  86. Smith, R.J.F. (1982) The adaptive significance of alarm substance-fright reaction system. In Hara, T.J., ed. Chemoreception in Fishes. Amsterdam: Elsevier, pp. 327–42.Google Scholar
  87. Sorensen, P.W., Hara, T.J., Stacey, N.E. and Dulka, J.G. (1990) Extreme olfactory specificity of male goldfish to the preovulatory steroidal pheromone 17α,20β-dihydroxy-4-pregnen-3-one. J. comp. Physiol. A 166, 373–83.CrossRefGoogle Scholar
  88. Thomson, J.S. (1912) The dorsal vibratile fin of the rockling (Motella). Q. J. microsc. Sci. 58, 241–56.Google Scholar
  89. Weinstein, A., Voigt, R. and Atema, J. (1990) Spectral tuning of lobster olfactory cells and their response to defined mixtures and natural food extracts. ACHEMS-Abstract No. 45, 12th Ann. Meeting Ass. Chemorec. Sci. Sarasota, FL, 18–22 April 1990.Google Scholar
  90. Whitear, M. (1952) The innervation of the skin of teleost fishes. Q. J. microsc. Sci. 93, 298–305.Google Scholar
  91. Whitear, M. (1965) Presumed sensory cells in fish epidermis. Nature, Lond. 208, 703–4.Google Scholar
  92. Whitear, M. (1971) Cell specialization and sensory function in fish epidermis. J. Zool., Lond 163, 237–64.Google Scholar
  93. Whitear, M. (1976) Identification of the epidermal “Stiftchenzellen” of frog tadpoles by electron microscopy. Cell Tissue Res. 175, 391–402.CrossRefPubMedGoogle Scholar
  94. Whitear, M. (1983) The question of free nerve endings in the epidermis of lower vertebrates. Acta Biol. Hungarica 34, 303–19.Google Scholar
  95. Whitear, M. (1991) Solitary chemoreceptor cells. In Hara, T.J., ed. Chemoreception in Fishes. (in press).Google Scholar
  96. Whitear, M. and Kotrschal, K. (1988) The chemosensory anterior dorsal fin in rocklings (Gaidropsarus and Ciliata, Teleostei, Gadidae): activity, fine structure and innervation. J. Zool., Lond. 216, 339–66.Google Scholar
  97. Whitear, M. and Lane, E.B. (1983) Oligovillous cells of the epidermis: sensory elements of lamprey skin. J. Zool., Lond. 199, 359–84.Google Scholar
  98. Whitear, M. and Mittal, A.K. (1986) Structure of the skin of Agonus cataphractus (Teleostei). J. Zool., Lond. 210, 551–74.Google Scholar
  99. Yang, J. and Roper, S.D. (1987) Dye-coupling in taste buds in the mudpuppy, Necturus maculosus. J. Neurosci. 7, 3561–5.PubMedGoogle Scholar

Copyright information

© Chapman & Hall 1991

Authors and Affiliations

  • Kurt Kotrschal
    • 1
    • 2
  1. 1.Konrad-Lorenz-Forschungsstelle für EthologieGrünauAustria
  2. 2.Department of EthologyUniversity of ViennaWienAustria

Personalised recommendations