Plant Molecular Biology

, Volume 31, Issue 3, pp 585–593 | Cite as

Thi1, a thiamine biosynthetic gene inArabidopsis thaliana, complements bacterial defects in DNA repair

  • C. R. Machado
  • R. L. Costa de Oliveira
  • S. Boiteux
  • U. M. Praekelt
  • P. A. Meacock
  • C. F. M. Menck
Regular Article

Abstract

AnArabidopsis thaliana cDNA was isolated by complementation of theEscherichia coli mutant strain BW535 (xth, nfo, nth), which is defective in DNA base excision repair pathways. This cDNA partially complements the methyl methane sulfonate (MMS) sensitive phenotype of BW535. It also partially corrects the UV-sensitive phenothpe ofE. coli AB1886 (uvrA) and restores its ability to reactivate UV-irradiated λ phage. It has an insert of ca. 1.3 kb with an open reading frame of 1047 bp (predicting a protein with a molecular mass of 36 kDa). This cDNA presents a high homology to a stress related gene from two species ofFusarium (sti35) and to genes whose products participate in the thiamine biosynthesis pathway,THI4, fromSaccharomyces cerevisiae andnmt2 fromSchizosaccharomyces pombe. TheArabidopsis predicted polypeptide has homology to several protein motifs: amino-terminal chloroplast transit peptide, dinucleotide binding site, DNA binding and bacterial DNA polymerases. The auxotrophy for thiamine in the yeastthi4::URA3 disruption strain is complemented by theArabidopsis gene. Thus, the cloned gene, namedthi1, is likely to function in the biosynthesis of thiamine in plants. The data presented in this work indicate thatthi1 may also be involved in DNA damage tolerance in plant cells.

Key words

Arabidopsis DNA repair tolerance DNA damage thiamine biosynthesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman D: Basic local alignment search tool. J Mol Biol 215: 403–410 (1990).CrossRefPubMedGoogle Scholar
  2. 2.
    Babiychuk E, Kushnir S, Montagu MV, Inz D: TheArabidopsis thaliana apurinic endonuclease Arp reduces human transcription factors Fos and Jun. Proc Natl Acad Sci USA 91: 3299–3303 (1994).PubMedGoogle Scholar
  3. 3.
    Bachmann B: Pedigrees of some mutant strains ofEscherichia coli K-12. Bact Rev 36: 525–557 (1972).PubMedGoogle Scholar
  4. 4.
    Belanger FC, Leustek T, Chu B, Kriz AL: Evidence for the thiamine biosynthetic pathway in higher-plant plastids and its developmental regulation. Plant Mol Biol 29: 809–821 (1995).PubMedGoogle Scholar
  5. 5.
    Britt AB, Chen J-J, Mitchell D: A UV-sensitive mutant of Arabidopsis defective in the repair of pyrimidine-pyrimidinone (6–4) dimers. Science 261: 1571–1574 (1993).PubMedGoogle Scholar
  6. 6.
    Cerutti H, Osman N, Grandoni P, Jagendorf AT: A homologue ofEscherichia coli RecA proteins in plastids of higher plants. Proc Natl Acad Sci USA 89: 8068–8072 (1992).PubMedGoogle Scholar
  7. 7.
    Choi GH, Marek ET, Schardl LC, Richey MG, Chang S, Smith DA:sti35, a stress-responsive gene inFusarium spp. J Bact 172: 4522–4528 (1990).PubMedGoogle Scholar
  8. 8.
    Cieminis KGK, Rancelien VM, Prijalgauskien AJ, Tiunaitien NV, Rudzianskait AM, Jancys ZJ: Chromosome and DNA damage and their repair in higher plants irradiated with shortwave ultraviolet light. Mutat Res 181: 9–16 (1987).Google Scholar
  9. 9.
    Creissen G, Reynolds H, Xue Y, Mullineaux P: Simultaneous targeting of pea glutathione reductase and a bacterial fusion protein to chloroplasts and mitochondria in transgenic tobacco. Plant J 8: 167–175 (1995).CrossRefPubMedGoogle Scholar
  10. 10.
    Cunningham RP, Saporito SM, Spitzer SG, Weiss B: Endonuclease IV (nfo) mutant ofEscherichia coli. J Bact 168: 1120–1127 (1986).PubMedGoogle Scholar
  11. 11.
    Demple B, Harrison L: Repair of oxidative damage to DNA: enzymology and biology. Annu Rev Biochem 63: 915–948 (1994).CrossRefPubMedGoogle Scholar
  12. 12.
    Doetsch PW, Cunningham RP: The enzymology of apurinic/apyrimidinic endonucleases. Mutat Res 336: 173–201 (1990).Google Scholar
  13. 13.
    Elledge SJ, Mulligan JT, Ramler SW, Spottswood M, Davis RW: λ Yes: a multifunctional cDNA expression vector for the isolation of genes by complementation of yeast andEscherichia coli mutations. Proc Natl Acad Sci USA 88: 1731–1735 (1991).PubMedGoogle Scholar
  14. 14.
    Fedoroff NV: Biochemical and molecular techniques in maize research. In: Setlow J, Hollaender A (eds). Genetic Engineering: Principles and Methods, pp. 115–134. Plenum Publishing Corporation, New York (1985).Google Scholar
  15. 15.
    Hanahan D: Studies on transformation ofE. coli with plasmids. J Mol Biol 166: 557–580 (1983).PubMedGoogle Scholar
  16. 16.
    Henikoff S: Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene 28: 351–359 (1984).CrossRefPubMedGoogle Scholar
  17. 17.
    Henkin TM, Grundy FJ, Nicholson WL, Chambliss GH: Catabolite repression of alpha-amylase gene expression inBacillus subtilis involves a trans-acting gene product homologous to theEscherichia coli lacI and galR repressors. Mol Microbiol 5: 575–584 (1991).PubMedGoogle Scholar
  18. 18.
    Hoeijmakers JHJ: Nucleotide excision repair I: fromE. coli to yeast. Trends Genet 9 (5): 173–177 (1993).CrossRefPubMedGoogle Scholar
  19. 19.
    Hoeijmakers JHJ: Nucleotide excision repair II: from yeast to mammals. Trends Genet 9 (6): 211–217 (1993).CrossRefPubMedGoogle Scholar
  20. 20.
    Julliard J-H, Douce R: Biosynthesis of the thiazole moiety of thiamin (vitamin B1) in higher plant chloroplasts. Proc Natl Acad Sci USA 88: 2042–2045 (1991).PubMedGoogle Scholar
  21. 21.
    Keegstra K, Olsen LJ, Theg SM: Chloroplastic precursors and their transport across the envelope membranes. Annu Rev Plant Physiol Plant Mol Biol 40: 471–501 (1989).CrossRefGoogle Scholar
  22. 22.
    Kieber JJ, Tissier AF, Signer ER: Cloning and characterization of anArabidopsis thaliana Topoisomerase I gene. Plant Physiol 99: 1493–1501 (1992).Google Scholar
  23. 23.
    Lawyer FC, Stoffel S, Saiki RK, Myambo K, Drummond R, Gelfand DH: Isolation, characterization, and expression inEscherichia coli of the DNA Polymerase gene fromThermus aquaticus. J Biol Chem 264: 6427–6437 (1989).PubMedGoogle Scholar
  24. 24.
    Li SL, Redei GP: Thiamine mutants of the cruciferArabidopsis. Biochem Genet 3: 163–170 (1969).PubMedGoogle Scholar
  25. 25.
    Lütcke HA, Chow KC, Mickel FS, Moss KA, Kern HF, Scheele GA: Selection of AUG inititation codons differs in plants and animals. EMBO J 6: 43–48 (1987).PubMedGoogle Scholar
  26. 26.
    Manetti AGO, Rosetto M, Maundrell KG:nmt2 of fission yeast: a second thiamine-repressible gene co-ordinately regulated withnmt1. Yeast 10: 1075–1082 (1994).PubMedGoogle Scholar
  27. 27.
    Moeller W, Amons R: Phosphate-binding sequences in nucleotide-binding proteins. FEBS Lett 186: 1–7 (1985).CrossRefPubMedGoogle Scholar
  28. 28.
    Pang Q, Hays JB, Rajagopal I, Schaefer TS: Selection ofArabidopsis cDNAs that partially correct phenotypes ofEscherichia coli DNA-damage-sensitive mutants and analysis of two plant cDNAs that appear to express UV-specific dark repair activities. Plant Mol Biol 22: 411–426 (1993).CrossRefPubMedGoogle Scholar
  29. 29.
    Pang Q, Hays JB, Rajagopal I: Two cDNAs from the plantArabidopsis thaliana that partially restore recombination proficiency and DNA-damage resistance toE. coli mutants lacking recombination-intermediate-resolution activities. Nucl Acids Res 21: 1647–1653 (1993).PubMedGoogle Scholar
  30. 30.
    Pang Q, Hays JB: UV-B-inducible and temperature sensitive photoreactivation of cyclobutane pyrimidine dimers inArabidopsis thaliana. Plant Physiol 95: 536–543 (1991).Google Scholar
  31. 31.
    Pang Q, Hays JB Rajagopal I: A plant cDNA that partially complementsEscherichia coli recA mutations predicts a polypeptide not strongly homologous to RecA proteins. Proc Natl Acad Sci USA 89: 8073–8077 (1992).PubMedGoogle Scholar
  32. 32.
    Pongor S, Skerl V, Cserzo M, Hatsagi Z, Simon G, Vevilacqua V: The SBASE domain library release 2.0 & A collection of annotated protein sequence segment. Nucl Acids Res 21: 3111–3115 (1992).Google Scholar
  33. 33.
    Praekelt UM, Byrne KL, Meacock PA: Regulation of THI4 (MOL1), a thiamine-biosynthetic gene ofSaccharomyces cerevisiae. Yeast 10: 481–490 (1994).PubMedGoogle Scholar
  34. 34.
    Praekelt UM, Meacock PA: MOL1, aSaccharomyces cerevisiae gene that is highly expressed in early stationary phase during growth on molasses. Yeast 8: 699–710 (1992).PubMedGoogle Scholar
  35. 35.
    Pruitt RE, Meyerowitz EM: Characterization of the genome ofArabidopsis thaliana. J Mol Biol 187: 169–183 (1986).PubMedGoogle Scholar
  36. 36.
    Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Press, Cold Spring Harbor, NY (1989).Google Scholar
  37. 37.
    Sanger F, Nicklen S, Coulson AR: DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467 (1977).PubMedGoogle Scholar
  38. 38.
    Santerre A, Britt AB: Cloning of a 3-methyladenine-DNA glycosylase fromArabidopsis thaliana. Proc Natl Acad Sci USA 91: 2240–2244 (1994).PubMedGoogle Scholar
  39. 39.
    Schena M, Picard D, Yamamoto KR: Vectors for constitutive and inducible gene expression in yeast. Meth Enzymol 194: 389–398 (1991).PubMedGoogle Scholar
  40. 40.
    Soyfer VN: Influence of physiological conditions on DNA repair and mutagenesis in higher plants. Physiol Plant 58: 373–380 (1983).Google Scholar
  41. 41.
    Stapleton AE: Ultraviolet radiation and plants: burning questions. Plant Cell 4: 1353–1358 (1992).CrossRefPubMedGoogle Scholar
  42. 42.
    Sullivan ML, Vierstra RD: An ubiquitin carrier protein from wheat germ is structurally and functionally similar to the yeast DNA repair enzyme encoded by RAD6. Proc Natl Acad Sci USA 86: 9861–9865 (1989).PubMedGoogle Scholar
  43. 43.
    Sullivan ML, Vierstra RD: Cloning af a 16 KDa ubiquitin carrier protein from wheat andArabidopsis thaliana. J Biol Chem 266: 23878–23885 (1991).PubMedGoogle Scholar
  44. 44.
    Thomas PS: Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc Natl Acad Sci USA 77: 5201–5205 (1980).PubMedGoogle Scholar
  45. 45.
    Veleminsky J, Gichner T: DNA repair in mutagen-injured higher plants. Mutat Res 55: 71–84 (1978).Google Scholar
  46. 46.
    Weigle JJ: Induction of mutations in a bacterial virus. Proc Natl Acad Sci USA 39: 628 (1953).Google Scholar
  47. 47.
    White BJ, Hochauser SJ, Cintron NM, Weiss B: Genetic mapping ofxthA, the structural gene for exonuclease III inEscherichia coli K-12. J Bact 126: 1082–1088 (1976).PubMedGoogle Scholar
  48. 48.
    Wickerham LJ: Taxonomy of yeast. US Dept Agric Tech Bull 1029: 11–56 (1951).Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • C. R. Machado
    • 1
  • R. L. Costa de Oliveira
    • 1
  • S. Boiteux
    • 2
  • U. M. Praekelt
    • 1
  • P. A. Meacock
    • 3
  • C. F. M. Menck
    • 1
  1. 1.Depto. de Biologia, Instituto de BiociênciasUniversidade de São PauloSão PauloBrazil
  2. 2.Institut Gustave RoussyVillejuifFrance
  3. 3.Dept of GeneticsUniv. of LeicesterLeicesterUK

Personalised recommendations