Advertisement

Journal of Elasticity

, Volume 44, Issue 1, pp 61–87 | Cite as

Decay rates for viscoelastic plates with memory

  • J. E. Muñoz Rivera
  • E. C. Lapa
  • R. Barreto
Regular Articles

Abstract

We consider the viscoelastic plate equation and we prove that the first and second order energies associated with its solution decay exponentially provided the kernel of the convolution also decays exponentially. When the kernel decays polynomially then the energy also decays polynomially. More precisely if the kernel g satisfies

g(t) ⩽ -c0g(t)1+1/p and g,g1+1/p ∈ L1(ℝ) with p > 2, then the energy decays as 1/(1+t)p.

Mathematics Subject Classifications (1991)

35B40 35L05 35L70 

Key words

viscoelasticity exponential decay initial boundary value problems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.C. MacCamy, A model for one dimensional non linear viscoelasticity. Quart. Appl. Math. 35 (1977) 21–33.Google Scholar
  2. 2.
    C.M. Dafermos, An abstract Volterra equation with application to linear viscoelasticity. J. Diff. Eqs. 7 (1970) 554–589.Google Scholar
  3. 3.
    C.M. Dafermos, Asymptotic stability in viscoelasticity. Arch. Rational Mech. Anal., 37 (1970) 297–308.Google Scholar
  4. 4.
    C.M. Dafermos and J.A. Nohel, Energy methods for non linear hyperbolic Volterra integrodifferential equation. Comm. PDE 4 (1979) 219–278.Google Scholar
  5. 5.
    C.M. Dafermos and J.A. Nohel, A nonlinear hyperbolic Volterra equation in viscoelasticity. Amer. J. Math. Supplement (1981) 87–116.Google Scholar
  6. 6.
    G. Dassios and F. Zafiropoulos, Equipartition of energy in linearized 3-D viscoelasticity. Quart. Appl. Math. 48 (1990) 715–730.Google Scholar
  7. 7.
    J.M. Greenberg, A priori estimates for flows in dissipative materials. J. Math. Anal. Appl. 60 (1977) 617–630.Google Scholar
  8. 8.
    W.J. Hrusa, Global existence and asymptotic stability for a semilinear Volterra equation with large initial data. SIAM J. Math. Anal. 16 (1), January 1985.Google Scholar
  9. 9.
    W.J. Hrusa and J.A. Nohel, The Cauchy problem in one dimensional nonlinear viscoelasticity. J. Diff. Eqs. 58 (1985) 388–412.Google Scholar
  10. 10.
    M. Renardy, W.J. Hursa and J.A. Nohel, Mathematical Problems in Viscoelasticity. Pitman monograph in Pure and Applied Mathematics 35 (1987).Google Scholar
  11. 11.
    J.E. Lagnese, Asymptotic energy estimates for Kirchhoff plates subject to weak viscoelastic damping. International Series of Numerical Mathematics, Vol. 91, Birhäuser-Verlag, Bassel (1989).Google Scholar
  12. 12.
    J.E. Lagnese, and J.L. Lions, Modelling analysis of thin plates. Collection Recherches en Mathématiques Appliquées 6. Masson, Paris (1989).Google Scholar
  13. 13.
    J.L. Lions, and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications. Springer-Verlag, New York, Vol. I (1972).Google Scholar
  14. 14.
    J.E. Muñoz Rivera, Asymptotic behaviour in linear viscoelasticity. Quart. Appl. Math. III (1994) 257–273.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • J. E. Muñoz Rivera
    • 1
  • E. C. Lapa
    • 2
  • R. Barreto
    • 3
  1. 1.Department of Research DevelopmentNational Laboratory for Scientific ComputationRio de JaneiroBrasil
  2. 2.Universidad Nacional Mayor de San MarcosLimaPeru
  3. 3.Department of Mathematics of Fluminense UniversityRio de JaneiroBrasil

Personalised recommendations