Journal of Elasticity

, Volume 6, Issue 3, pp 313–326 | Cite as

Bone remodeling I: theory of adaptive elasticity

  • S. C. Cowin
  • D. H. Hegedus
Article

Abstract

A thermomechanical continuum theory involving a chemical reaction and mass transfer between two constituents is developed here as a model for bone remodeling. Bone remodeling is a collective term for the continual processes of growth, reinforcement and resorbtion which occur in living bone. The resulting theory describes an elastic material which adapts its structure to applied loading.

Zusammenfassung

Eine Thermo-mechanische kontinuum Theorie als Modell für die Knochenrekonstrucktion wird entwickelt, die eine chemische Reaktion und einen Massentransport zwischen zwei Komponenten behandelt. Knochenrekonstruktion ist ein Sammelbegriff für die kontinuierlichen Prozesse des Wachsens, der Verstärkung und des Abbaus wie sie im lebenden Knochen auftreten. Die Theorie beschreibt ein elastisches Material, das sich in der Form der Belastung anpasst.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Herrman G. and Liebowitz H., “Mechanics of Bone Fracture”, inFracture: An Advanced Treatise, Vol. 7, ed., Liebowitz H., Academic Press, New York, (1972) 771–840Google Scholar
  2. [2]
    Coleman B. D. and Noll W., “The Thermodynamics of Elastic Materials with Heat Conduction and Viscosity”,Arch. Rat. Mech. Anal., 13 (1963) 167–178Google Scholar
  3. [3]
    Coleman B. D. and Mizel V., “Existence of Caloric Equations of State in Thermodynamics”,J. Chem. Phys. 40 (1964) 116–125Google Scholar
  4. [4]
    Hegedus D. H. and Cowin S. C., Bone Remodeling II; Small Strain Adaptive Elasticity,Journal of Elasticity 6 (1976) 337–351Google Scholar
  5. [5]
    McLean F. C. and Urist M. R.,Bone, 3rd ed., Univ. Chicago, Chicago, 1968Google Scholar
  6. [6]
    Kummer B. K., “Biomechanics of Bone”, inBiomechanics, ed. Fung Y. C., et al., Prentice Hall, Englewood Cliffs, N. J., (1972) 237–271Google Scholar
  7. [7]
    Koch J. C., “Laws of Bone Architecture”,Am. J. Anat., 21 (1917) 177–293Google Scholar
  8. [8]
    Singh M. et al., “Changes in Trabecular Pattern of the Upper End of the Femur as an Index of Osteoporosis”,J. Bone and Joint Surgery, 52-A (1970) 457–467Google Scholar
  9. [9]
    Wolff J.,Das Gesetz der Transformation der Knochen, A. Hirschwald, Berlin, 1892Google Scholar
  10. [10]
    Glucksmann A., “Studies on Bone Mechanics in Vitro”,Anatomical Record, 72 (1938) 97–115Google Scholar
  11. [11]
    Basset C. A. L. and Becker R. O., “Generation of Electric Potentials in Bone in Response to Stress”,Science, 137 (1962) 1063–1064Google Scholar
  12. [12]
    Shamos M. H. and Lavine L. S., “Piezoelectric Effect in Bone”,Nature, 197 (1963) 81Google Scholar
  13. [13]
    Justus R. and Luft J. H., “A Mechanochemical Hypothesis for Bone Remodeling Induced by Mechanical Stress”,Calcified Tissue Research, 5 (1970) 222–235Google Scholar
  14. [14]
    Frost H. M., “Dynamics of Bone Remodeling”, inBone Biodynamics, ed. Frost H. M., Little and Brown, Boston, (1964) 316Google Scholar
  15. [15]
    Gjelsvik A., “Bone Remodeling and Piezoelectricity-I”,J. Biomechanics, 6 (1973) 69–77Google Scholar
  16. [16]
    Gjelsvik A., “Bone Remodeling and Piezoelectricity-II”.J. Biomechanics, 6 (1973) 187–193Google Scholar
  17. [17]
    Martin R. B., “The Effects of Geometric Feedback in the Development of Osteoporosis”,J. Biomechanics, 5 (1972) 447–455Google Scholar
  18. [18]
    Frost H. M., “Tetracycline-based Histological Analysis of Bone Remodeling”,Calcified Tissue Research, 3 (1969) 211–237Google Scholar
  19. [19]
    Neuman W. F. and Neuman M. W., “The Chemical Dynamics of Bone Mineral”, Univ. Chicago Press, Chicago, 1958Google Scholar
  20. [20]
    Fukada E. and Yasuda I., “On the Piezoelectric Effect of Bone”,J. Physical Soc. Japan, 12 (1957) 1158–1162Google Scholar
  21. [21]
    Becker R. O. and Murray D. G., “The Electrical Control System Regulating Fracture Healing in Amphibians”,Clinical Orthopedics, 73 (1970) 169–198Google Scholar
  22. [22]
    Basset C. A. L. and Pawluk R. J., “Effect of Electric Currents of Bone in Vivo”,Nature, 204 (1964) 652–653Google Scholar
  23. [23]
    Truesdell C. and Toupin R., “The Classical Field Theories”,Handbook of Physics, III/1, Springer, New York, 1960Google Scholar
  24. [24]
    Truesdell C. and Noll W., “Non-Linear Field Theories”,Handbook of Physics, III/3, Springer, New York, 1965Google Scholar
  25. [25]
    Goodman M. A. and Cowin S. C., “A Continuum Theory for Granular Materials”,Arch. Rat. Mech. Anal., 44 (1972) 249–266Google Scholar

Copyright information

© Noordhoff International Publishing 1976

Authors and Affiliations

  • S. C. Cowin
    • 1
  • D. H. Hegedus
    • 1
  1. 1.Tulane UniversityNew OrleansUSA

Personalised recommendations