, Volume 36, Issue 2, pp 555–561 | Cite as

α-Tomatine and other steroidal glycoalkaloids in fruits of tomato lines resistant to the glasshouse whitefly (Trialeurodes vaporariorum Westw.)

  • W. M. J. Van Gelder
  • O. M. B. De Ponti
Resistance and Tolerance


The total steroidal alkaloid compositions of the mature-harvested fruits of the tomato cultivar Allround (Lycopersicon esculentum), of the species L. hirsutum glabratum, resistant to the glasshouse whitefly (Trialeurodes vaporariorum), and of four resistant lines were determined by capillary gas chromatography. The contents of α-tomatine in the red-ripe fruits of ‘Allround’ and in those of the lines were low (≤5 mg/kg fresh weight). The green-mature fruits of the wild species had a high content (3390 mg/kg fresh weight) of α-tomatine. The total alkaloid profiles of ‘Allround’ and of the lines were similar. Comparison of flame ionisation detector response with thermoionic detector response indicated that in addition to tomatidine, the aglycone of α-tomatine, a small amount of one other steroidal alkaloid might be present in ‘Allround’ and in the lines. The wild species contained five compounds which possibly are steroidal alkaloids.

The safety level of α-tomatine in tomatoes is discussed. It was concluded that, in respect of the glycoalkaloids of the mature-harvested fruits, the resistant tomato breeding lines are as safe for human cosumption as the standard cultivar.

Index words

Lycopersicon esculentum tomato L. hirsutum glabratum Trialeurodes vaporariorum glasshouse whitefly resistance tomatine glycoalkaloids, capillary gas chromatography 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ali, A. & E. Schlösser, 1977. Tomatingehalt verschiedener Pflanzenteile von Tomaten in Abhängigkeit vom Entwicklungszustand. Angew. botanik 51: 143–148.Google Scholar
  2. Berlinger, M. J., R. Dahan & E. Shevach-Urkin, 1984. Resistance to the tobacco whitefly, Bemisia tabaci, in tomato and related species: a quick screening method. Bull. IOBC-WPRS 1984/VII/4: 39–40.Google Scholar
  3. Ellinger, C. A., Y. Wong, B. C. Chan & A. C. WaissJr., 1981. Growth inhibitors in tomato (Lycopersicon) to tomato fruitworm (Heliothis zea). J. Chem. Ecol. 7: 753–758.Google Scholar
  4. Gelder, W. M. J. van, 1984. A new hydrolysis technique for steroid glycoalkaloids with unstable aglycones from Solanum spp. J. Sci. Food Agric. 35: 487–494.Google Scholar
  5. Gelder, W. M. J. van, 1985a. Determination of the total C27-steroidal alkaloid composition of Solanum species by high-resolution gas chromatography. J. Chromatogr. 331: 285–293.Google Scholar
  6. Gelder, W. M. J. van, 1985b. Plant breeding as a tool for improving product quality. Bedrijfsontwikkeling 16: 474–478 (in Dutch).Google Scholar
  7. Isman, M. B. & S. S. Duffey, 1982. Toxicity of tomato phenolic compounds to the fruitworm, Heliothis zea. Ent. Exp. & Appl. 31: 370–376.Google Scholar
  8. Jadhav, S. J., R. P. Sharma & D. K. Salunkhe, 1981. Naturally occurring toxic alkaloids in foods. CRC Crit. Rev. Toxicol. 9: 21–104.Google Scholar
  9. Juvik, J. A., 1980. Assessment of the alkaloid, α-tomatine, as a potential source of natural insect resistance in tomato cultivars. Ph. D. Thesis, University of California, Davis, 150 pp.Google Scholar
  10. Juvik, J. A., M. A. Stevens & C. M. Rick, 1982. Survey of the genus Lycopersicon for variability in α-tomatine content. HortScience 17: 764–766.Google Scholar
  11. Keeler, R. F., 1979. Toxins and teratogens of the Solanacea and Liliaceae. In: A. D. Kinghorn (Ed.), Toxic plants. Columbia University Press, New York, pp. 59–82.Google Scholar
  12. Keeler, R. F., S. Young & D. Brown, 1976. Spina bifida, exencephaly, and cranial bleb produced in hamsters by the Solanum alkaloid solasodine. Res. Commun. Chem. Pathol. Pharmacol. 13: 723–730.Google Scholar
  13. Lepper, W., 1949. solaningehalte von 58 Kartoffelsorten. Z. Lebensm. Unters. Forsch. 88: 264–273.Google Scholar
  14. Nishie, K., W. P. Norred & A. P. Swain, 1975. Pharmacology and toxicology of chaconine and tomatine. Res. Commun. Chem. Pathol. Pharmacol. 12: 657–668.Google Scholar
  15. Ponti, O. M. B. de, G. Pet & N. G. Hogenboom, 1975. Resistance to the glasshouse whitefly (Trialeurodes vaporariorum Westw.) in tomato (Lycopersicon esculentum Mill). and related species. Euphytica 24: 645–649.Google Scholar
  16. Ponti, O. M. B. de, M. M. Steenhuis & P. Elzinga, 1983. Partial resistance of tomato to the greenhouse whitefly (Trialeurodes vaporariorum Westw.) to promote its biological control. Med. Fac. Landbouww. Rijksuniv. Gent 48: 195–198.Google Scholar
  17. Roddick, J. G., 1974. The steroidal glycoalkaloid α-tomatine. Phytochemistry 13: 9–25.Google Scholar
  18. Sander, H., 1956. Studien über Bildung und Abbau von Tomatin in der Tomatenplanze. Planta 47: 374–400.Google Scholar
  19. Schreiber, K. & O. Aurich, 1966. Isolierung von Nebenalkaloiden und 3β-hydroxy-5α-pregn-16-en-20-on aus Lycopersicon pimpinellifolium Mill. Phytochemistry 5: 707–712.Google Scholar
  20. Sinden, S. L. & R. E. Webb, 1974. Effect of environment on glycoalkaloid content of six potato varieties at 39 locations. U.S.Dep. Agric. Tech. Bull. 1472.Google Scholar

Copyright information

© Veenman B.V. 1987

Authors and Affiliations

  • W. M. J. Van Gelder
    • 1
  • O. M. B. De Ponti
    • 2
  1. 1.Foundation for Agricultural Plant Breeding (SVP)Wageningenthe Netherlands
  2. 2.Institute for Horticultural Plant Breeding (IVT)Wageningenthe Netherlands
  3. 3.Research Institute for Plant Protection (IPO)Wageningenthe Netherlands

Personalised recommendations