Advertisement

Hydrobiologia

, Volume 207, Issue 1, pp 43–52 | Cite as

Trophic structure and productivity of the lagoonal communities of Tikehau atoll (Tuamotu Archipelago, French Polynesia)

  • Loïc Charpy
  • Claude J. Charpy-Roubaud
Part One: Trophic Level Interaction

Abstract

Carbon standing stocks and fluxes were studied in the lagoon of Tikehau atoll (Tuamotu archipelago, French Polynesia), from 1983 to 1988.

The average POC concentration (0.7–2000 µm) was 203 mg C m−3. The suspended living carbon (31.6 mg C m−3) was made up of bacteria (53%), phytoplankton < 5 µm (14.2%), phytoplankton > 5 µm (14.2%), nanozooplankton 5–35 µm (5.7%), microzooplankton 35–200 µm (4.7%) and mesozooplankton 200–2000 µm (7.9%). The microphytobenthos biomass was 480 mg C m−2.

Suspended detritus (84.4% of the total POC) did not originate from the reef flat but from lagoonal primary productions. Their sedimentation exceeded phytobenthos production.

It was estimated that 50% of bacterial biomass was adsorbed on particles. the bacterial biomass dominance was explained by the utilisation of 1) DOC excreted by phytoplankton (44–175 mg C m−2 day −1) and zooplankton (50 mg Cm−2 day−1)2) organic compounds produced by solar-induced photochemical reactions 3) coral mucus.

50% of the phytoplankton biomass belongs to the < 5 µm fraction. This production (440 mg C m−2 day−1) exceeded phytobenthos production (250 mg C m−2 day−1) when the whole lagoon was considered.

The zooplankton > 35 µm ingested 315 mg C m−2 day−1, made up of phytoplankton, nanozooplankton and detritus. Its production was 132 mg C m−2 day−1.

Key words

atoll suspended matter detritus phytoplankton microphytobenthos zooplankton 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Azam, F., T. Frenchel, J. G. Field, J. S. Gray, L. A. Meyer-Reil & F. Thingstad, 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10: 257–263.Google Scholar
  2. Blanchot, J., L. Charpy & R. Le Borgne, 1989. Size composition of particulate organic matter in the lagoon of Tikehau atoll (Tuamotu archipelago). Mar. Biol. 101: 329–339.Google Scholar
  3. Charpy, L., 1985. Distribution and composition of particulate organic matter in the lagoon of Tikehau (Tuamotu archipelago, French Polynesia). Proc. 5th int. Coral Reef Congress, Tahiti, 3: 353–357.Google Scholar
  4. Charpy, L., J. Marchand, F. Rougerie, J. Teuri, P.-J. Vienney & B. Wauthy, 1985. Résultats de la mission TATI du N.O. CORIOLIS (Tahiti-Tikehau) — Mars 1984 -. Archives d'Océanographie du Centre Orstom de Tahiti, 85-09: 1–57.Google Scholar
  5. Charpy-Roubaud, C. J., 1988. Production primaire des fonds meubles du lagon de Tikehau (Atoll des Tuamotu, Polynésie Française). Oceanol. Acta. 11: 241–248.Google Scholar
  6. Charpy-Roubaud, C. J., L. Charpy & L. Lemasson, 1988. Benthic and Planktonic primary production of an open atoll lagoon (Tikehau, French Polynesia). Proc. 6th int. Coral Reef Symposium, Australia, 2: 551–556.Google Scholar
  7. Fuhrman, J. A., T. D. Sleeter, C. A. Carlson & L. M. Proctor, 1989. Dominance of bacterial biomass in the Sargasso Sea and its ecological implications. Mar. Ecol. Prog. Ser. 57: 207–217.Google Scholar
  8. Gerber, R. P. & N. Marshall, 1982. Characterization of the suspended particulate organic matter and feeding by the lagoon zooplankton at Enewetak atoll. Bull. mar. Sci. 32: 290–300.Google Scholar
  9. Gordon, D. C. Jr & W. H. Sutcliffe Jr, 1973. A new dry combustion method for the simultaneous determination of total organic carbon and nitrogen in sea water. Mar. Chem. 1: 231–244.Google Scholar
  10. Harmelin-Vivien, M., 1985. Atoll de Tikehau, Archipel des Tuamotu. Proc. 5th int. Coral Reef Congress, Tahiti, 1: 211–268.Google Scholar
  11. Hatcher, B. G., 1983. The role of detritus in the metabolism and secondary production of coral reef ecosystems. In J. T. Baker et al. (eds), Proc. Great Barrier Reef Conference, Australia: 317–325.Google Scholar
  12. Holm-Hansen, O. & C. R. Booth, 1966. The measurement of adenosine triphosphate in the ocean and its ecological significance. Limnol. Oceanogr. 11: 510–519.Google Scholar
  13. Hopkinson Jr, C. S., B. F. Sherr & H. W. Ducklow, 1987. Microbial regeneration in the water column of Davies Reef, Australia. Mar. Ecol. Prog. Ser. 41: 147–153.Google Scholar
  14. Kinsey, D. W., 1983. Standards of performance in coral reef primary production and carbon turnover. In D. J. Barnes (ed.), Perspectives on coral reefs, Brian Clousten Publisher, Manuka, A.C.T.: 209–220.Google Scholar
  15. Kiørboe, T., H. Kaas, B. Kruse, F. Møhlenberg, P. Tiselius & G. Ertebjerg, 1990. The structure of the pelagic food web in relation to water column structure in the Skagerrak. Mar. Ecol. Prog. Ser. 59: 19–32.Google Scholar
  16. Landry, M. R., L. W. Haas & V. L. Fagerness, 1984. Dynamics of microbial plankton communities: experiments in Kaneohe Bay, Hawaii. Mar. Ecol. Prog. Ser. 16: 127–133.Google Scholar
  17. Laws, E. A., G. R. DiTullio & D. G. Redalje, 1987. High phytoplankton growth and production rates in the North Pacific subtropical gyre. Limnol. Oceanogr. 32: 905–918.Google Scholar
  18. Laws, E. A., D. G. Redalje, L. W. Haas, P. K. Bienfang, R. W. Eppley, W. G. Harrison, D. M. Karl & J. Mara, 1984. High phytoplankton growth and production rates in oligotrophic Hawaiian coastal waters. Limnol. Oceanogr. 29: 1161–1169.Google Scholar
  19. Le Borgne, R., 1978. Evaluation de la production secondaire planctonique en milieu océanique par la methode des rapports C/N/P. Oceanol. Acta 1: 107–118.Google Scholar
  20. Le Borgne, R. P., J. Blanchot & L. Charpy, 1989. Zooplankton of the atoll of Tikehau (Tuamotu Archipelago) and its relationship to particulate matter. Mar. Biol. 102: 341–353.Google Scholar
  21. Legendre, L., S. Demers, B. Delesalle & C. Harnois, 1988. Biomass and photosynthetic activity of phototrophic picoplankton in coral reef waters (Moorea Island, French Polynesia). Mar. Ecol. Prog. Ser. 47: 153–160.Google Scholar
  22. Lenhardt, X., 1987. Etude bathymetrique du lagon de l'atoll de Tikehau, ORSTOM Tahiti, Notes et Doc. ORSTOM Tahiti Ser. Oceanogr. 35: 53–70.Google Scholar
  23. Lenhardt, X., 1988. Hydrodynamique des lagons d'atoll et d'île haute en Polynésie Française. Thèse du Museum National d'Histoire Naturelle, Paris, 156 pp.Google Scholar
  24. Linley, E. A. S. & K. Koop, 1986. Significance of pelagic bacteria in a coral reef lagoon, One Tree Island, Great Barrier Reef. Mar. Biol. 92: 457–464.Google Scholar
  25. Moriarty, D. J. W., 1979. Biomass of suspended bacteria over coral reefs. Mar. Biol. 53: 193–200.Google Scholar
  26. Moriarty, D. J. W., P. C. Pollard, D. M. Alongi, C. R. Wilkinson & J. S. Gray, 1985. Bacterial productivity and trophic relationships with consumers on a coral reef (MECORI). Proc. 5th int. Coral Reef Congress, Tahiti, 3: 457–462.Google Scholar
  27. Newell, R. C., M. I. Lucas & E. A. S. Linley, 1981. Rate of Degradation and Efficiency of Conversion of Phytoplankton Debris by Marine Micro-Organisms. Mar. Ecol. Prog. Ser. 6: 123–136.Google Scholar
  28. Plante-Cuny, M.-R., 1984. Le microphytobenthos et son rôle à l'échelon primaire dans le milieu marin. Oceanis 10: 417–427.Google Scholar
  29. Riemann, B., M. Søndergaard, H. H. Schierup, S. Bosselmann, G. Christensen, J. Hansen & B. Nielsen, 1982. Carbon metabolism during a spring diatom bloom in eutrophic Lake Mossø. Int. Revue ges. Hydrobiol. 67: 145–185.Google Scholar
  30. Sarazin, G., C. Charpy-Roubaud & L. Charpy, 1988. Early diagenesis of organic matter in the sediments of the central bassin of Tikehau lagoon-reef (Tuamotu Archipelago — French Polynesia). Proc. 6th int. Coral Reef Symposium, Australia, 3: 373–378.Google Scholar
  31. Søndergaard, M., B. Riemann, L. M. Jensen, N. O. G. Jørgensen, P. K. Bjørnsen, M. Olesen, J. B. Larsen, O. Geertz-Hansen, J. Hansen, K. Christoffersen, A. M. Jespersen, F. Andersen & S. Bosselmann, 1988. Pelagic food web processes in an oligotrophic lake. Hydrobiologia 164: 271–286.Google Scholar
  32. Sorokin, Y. I., 1974. Bacteria as a component of the coral reef community. Proc. 2nd int. Coral Reef Symposium, Manille, 1: 3–10.Google Scholar
  33. Takahashi, M. & P. K. Bienfang, 1983. Size structure of phytoplankton biomass and photosynthesis in subtropical Hawaiian waters, Mar. Biol. 76: 203–211.Google Scholar
  34. Takahashi, M., K. Kikuchi & Y. Hara, 1985. Importance of picocyanobacteria biomass (unicellular, blue-green algae) in the phytoplankton population of the coastal waters off Japan. Mar. Biol. 89: 63–69.Google Scholar
  35. Telek, G. & N. Marshall, 1974. Using a CHN analyser to reduce carbonate interference in particulate organic carbon analysis. Mar. Biol. 24: 219–221.Google Scholar
  36. Winn, C. & D. Karl, 1984. Microbial productivity and community growth rate estimates in the tropical north Pacific Ocean. Biol. Oceanogr. 3: 123–145.Google Scholar
  37. Yentsch, C. S. & D. W. Menzel, 1963. A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence. Deep-Sea Res. 10: 221–231.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • Loïc Charpy
    • 1
  • Claude J. Charpy-Roubaud
    • 1
  1. 1.ORSTOM et Centre d'Océanologie de MarseilleStation Marine d'EndoumeMarseilleFrance

Personalised recommendations