Journal of Elasticity

, Volume 15, Issue 3, pp 271–282 | Cite as

Profiles of minimum stress concentration for antiplane deformation of an elastic solid

  • Lewis T. Wheeler
  • Tayfun E. Tezduyar
  • Bahir H. Eldiwany


Stress Concentration Minimum Stress Antiplane Deformation Minimum Stress Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A.J. Durelli and W.M. Murray, Stress distribution around an elliptical discontinuity in any two-dimensional, uniform, and axial system of combined stress, Exper. Stress Analysis Proc., Vol. 1, No. 1 (1943) 19–31.Google Scholar
  2. [2]
    H. Neuber, Der zugbeanspruchte Flachstab mit optimalem Querschnitt-übergang, Forsch. Ingenieurwesen, 35 (1969) 29–30.Google Scholar
  3. [3]
    H. Neuber, Zur Optimierung der Spannungskonzentration, Continuum Mechanics and Related Problems of Analysis, Nauka, Moscow (1972) 375–380.Google Scholar
  4. [4]
    G.P. Cherepanov, Inverse problems of the plane theory of elasticity, PMM, 38 No. 6 (1974).Google Scholar
  5. [5]
    L.T. Wheeler, On the role of constant stress surfaces in the problem of minimizing elastic stress concentration, Int. J. Solids and Structures, 12 (1976) 779–789.Google Scholar
  6. [6]
    N.V. Banichuk, Optimality conditions in the problem of elastic stress concentration, PMM, 41, No. 5 (1977) 920–925.Google Scholar
  7. [7]
    L.T. Wheeler, On optimum profiles for the minimization of elastic stress concentration, ZAMM 58, T235-T236 (1978).Google Scholar
  8. [8]
    L.T. Wheeler, The problem of minimizing stress concentration at a rigid inclusion, submitted for J. Applied Mechanics, 52, No. 1 (1985) 83–86.Google Scholar
  9. [9]
    R. RichardsJr. and G.S. BjorkmanJr., Harmonic shapes and optimum design, Journal of the A.S.C.E. Engineering Mechanics Division, 106 (1980) 1125–1134.Google Scholar
  10. [10]
    L.T. Wheeler and I.A. Kunin, On voids of minimum stress concentration, Int. J. Solids and Structures, 18 (1982) 85–89.Google Scholar
  11. [11]
    P. Garabdeian and D.C. Spencer, Extremal methods in cavitational flow, J. Rat. Mech. Analysis, 1 (1952) 359–409.Google Scholar
  12. [12]
    D. Gilbarg, Jets and cavities, Encyclopedia of Physics (1960), S. Flügge (Ed.), Springer, New York, Vol. IX/III.Google Scholar
  13. [13]
    B.H. Eldiwany and L.T. Wheeler, Groove bottom contours of minimum stress concentration for antiplane shear deformation, J. Applied Mechanics. 52, No. 2 (1985) 379–384.Google Scholar

Copyright information

© Martinus Nijhoff Publishers 1985

Authors and Affiliations

  • Lewis T. Wheeler
    • 1
  • Tayfun E. Tezduyar
    • 1
  • Bahir H. Eldiwany
    • 1
  1. 1.Department of Mechanical EngineeringUniversity of HoustonHoustonUSA

Personalised recommendations