Advertisement

Journal of Elasticity

, Volume 13, Issue 1, pp 17–47 | Cite as

The dynamical behaviour of nonlinear elastic spherical shells

  • Carmen Calderer
Article

Keywords

Dynamical Behaviour Spherical Shell Elastic Spherical Shell Nonlinear Elastic Spherical Shell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Knowles, J. A. “Large amplitude oscillations of a tube of incompressible elastic material”, Quart. Appl. Math. 18, (1960).Google Scholar
  2. [2]
    Jaunzemis, W. “Continuum Mechanics”, New York MacMillan (1976).Google Scholar
  3. [3]
    Eringen, A. C. and Suhuby, E. S. “Elastodynamics”, New York Academic Press, 1974–75.Google Scholar
  4. [4]
    Hale, J. K. “Ordinary differential equations”, Wiley, New York, 1969.Google Scholar
  5. [5]
    Hartman, P. “Ordinary differential equations”, Wiley, New York, 1964.Google Scholar
  6. [6]
    Truesdell, C. and Noll, W. “The non-linear field theories of mechanics”, Handbuch der Physik Vol. III/3.Google Scholar
  7. [7]
    Wang, C. and Truesdell, C. “Introduction to rational elasticity”, Noordhoff, Groningen, 1973.Google Scholar
  8. [8]
    Ball, J. M. “Constitutive Inequalities and existence theorems in non-linear elastostatics”, Nonlinear Analysis and Mechanics, Heriot-Watt Symposium Vol. 1, Pitman 1978.Google Scholar
  9. [9]
    Rivlin, R. S. “Some restrictions on constitutive inequalities” Proc. Int. Symp. on the Foundations of Contiuum Thermodynamics, Bunaco 1973.Google Scholar
  10. [10]
    Young, N. J. B. “Extensions of a Theorem of Hadamard on an integral inequality in the contiuum theory of Bifurcation”, Quart. Journal of Mech. and Appl. Math., 1976, 29.Google Scholar
  11. [11]
    Haugthon, D. M. and Ogden, R. W. “On the incremental equations in non-linear elasticity”, J. Mech. Phys. Solids 26 (1978).Google Scholar
  12. [12]
    Knowles, J. K. and Sternberg, E. “On the Failure of Ellipticity of the Equations for Finite Elastostatic Plane Strain”, J. of Elasticity 5 (1975).Google Scholar
  13. [13]
    Hildebrand, F. B. “Finite difference equations and simulations”, Prentice Hall (1968).Google Scholar
  14. [14]
    Ball, J. M. “Finite time blow-up in nonlinear problems”, Proc. Symp. Nonlinear Evolution Equations, Univ. of Wisconsin.Google Scholar
  15. [15]
    Knops, R. J., Levine, H. A. and Payne, L. E. “Non existence, instability, and growth theorems for solutions of a class of abstract nonlinear equations with applications to nonlinear elastodynamics”, Arch. Rat. Mech. Anal. 55 (1974).Google Scholar
  16. [16]
    Antman, S. S. “Existence of solutions of the equilibrium equations for nonlinear elastic rings and archs” Indiana Univ. Math. J. 20 (1970).Google Scholar
  17. [17]
    Coleman, B. D. and Noll, W. “On the thermostatics of continuous media”. Arch. Rat. Mech. Anal. (1959) 4.Google Scholar
  18. [18]
    Al-Amood, N. “Stability in critical cases”, Ph.D. thesis. Heriot-Watt University, 1978.Google Scholar
  19. [19]
    Carr, J. Lectures on Hopf bifurcation theory. Heriot-Watt University, 1978.Google Scholar
  20. [20]
    Ogden, R. W. “Large deformation isotropic elasticity on the correlation of theory and experiment for incompressible rubber-like solids”. Proc. Roy. Soc. London A 32 (1972).Google Scholar
  21. [21]
    Green, A. E. and Adkins, J. E. “Large elastic deformations”. Oxford University Press.Google Scholar
  22. [22]
    Naghdi, P. M. “The theory of shells and plates”. Handbuch der Physik. Vd VI a/2.Google Scholar
  23. [23]
    Knowles, J. A. and Jakub, M. T. “Finite dynamic deformations of an incompressible medium containing a spherical cavity”. ARMA 18 (1965).Google Scholar

Copyright information

© Martinus Nijhoff Publishers 1983

Authors and Affiliations

  • Carmen Calderer
    • 1
    • 2
  1. 1.Department of MathematicsHeriot-Watt UniversityEdinburghScotland, U.K.
  2. 2.Department of MathematicsUniversity of MarylandCollege ParkU.S.A.

Personalised recommendations