Plant Molecular Biology

, Volume 24, Issue 1, pp 1–20 | Cite as

Physiological roles for secondary metabolites in plants: some progress, many outstanding problems

  • M. J. C. Rhodes


Plant Pathology Secondary Metabolite Physiological Role Outstanding Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baas WJ: Secondary plant compounds, their ecological significance and consequences for the carbon budget. In: Lambers H (ed) Causes and Consequences of Variation in Growth Rate and Productivity of Higher Plants, pp. 310–340. SPB Academic Publishers, The Hague (1989).Google Scholar
  2. 2.
    Barbosa P, Letourneau DK: Novel aspects of insectplant interactions. Wiley, New York (1988).Google Scholar
  3. 3.
    Bell EA: The physiological role(s) of secondary (natural) products. In: Stumpf PK, Conn EE (eds) The Biochemistry of Plants, Vol. 7 pp. 1–20. Academic Press, New York (1981).Google Scholar
  4. 4.
    Bevan M, Shufflebottom D, Edwards K, Jefferson R, Schuch W: Tissue- and cell-specific activity of a phenylanine ammonia-lyase promoter in transgenic plants. EMBO J 8: 1899–1906 (1989).PubMedGoogle Scholar
  5. 5.
    Bolwell GP, Mavandad M, Millar DJ, Edwards KJ, Schuch W, Dixon RA: Inhibition of mRNA levels and activities by trans-cinnamic acid in elicitor-induced bean cells. Phytochemistry 27: 2109–2117 (1988).CrossRefGoogle Scholar
  6. 6.
    Bracher D, Kutchan TM: Strictosidine synthase from Rauvolfia serpentina: analysis of a gene involved in indole alkaloid biosynthesis. Arch Biochem Biophys 294: 717–723 (1992).PubMedGoogle Scholar
  7. 7.
    Bracher D, Kutchan TM: Polymerase chain reaction comparison of the gene for strictosidine synthase from ten Rauvolfia species. Plant Cell Rep 11: 179–182 (1992).CrossRefGoogle Scholar
  8. 8.
    Brückner C, Kramell R, Schneider G, Knöfel H-D, Sembdner G, Schreiber K: N-[(-) jasmonyl]-S-tyrosine: a conjugate of jasmonic acid from Vicia faba. Phytochemistry 25: 2236–2237 (1986).CrossRefGoogle Scholar
  9. 9.
    Burroughs LF: l-Aminocyclopropane-l-carboxylic acid. A new amino acid in perry pears and cider apples. Nature 179: 360–361 (1957).PubMedGoogle Scholar
  10. 10.
    Chen Z, Klessig DF: Identification of a soluble salicylic acid-binding protein that may function in signal transduction in the plant disease response. Proc Natl Acad Sci USA 88: 8179–8183 (1991).PubMedGoogle Scholar
  11. 11.
    Corcuera LJ: Biochemical basis for the resistence of barley to aphids. Phytochemistry 33: 741–747 (1993).CrossRefGoogle Scholar
  12. 12.
    Crabalona L: Sur la présence de jasmonate de méthyle lévogyre [(pentène-2 yl)-2 oxo-3 cyclopentylacétate de méthyle, cis] dans l'huile essentielle de romarin de Tunisie. C.R. Acad. Sci. Paris 264: 2074–2076 (1967).Google Scholar
  13. 13.
    Creelman RA, Tierney ML, Mullet JE: Jasmonic acid/methyl jasmonate accumulate in wounded soybean hypocotyls and modulate wound gene expression. Proc Natl Acad Sci USA 89: 4938–4941 (1992).PubMedGoogle Scholar
  14. 14.
    Crombic L, Morgan DO: Synthesis of [14,14-2H2]-linolenic acid and its use to confirm the pathway to 12-oxophytodienoic acid (12-oxoPDA) in plants; a conspectus of the epxoycarbonium ion derived family of metabolites from linoleic and linolenic acid hydroperoxides. J Chem Soc Perkin Trans 1: 581–587 (1991).CrossRefGoogle Scholar
  15. 15.
    Demole E, Lederer E, Mercier D: Isolement et détermination de la structure du jasmonate de méthyl, constituant odorant caractéristique de l'essence de jasmin. Helv Chim Acta 45: 675–684 (1962).Google Scholar
  16. 16.
    Dittrich H, Kutchan TM: Molecular cloning, expression, and induction of berberine bridge enzyme, an enzyme essential to the formation of benzophenanthridine alkaloids in the response of plants to pathogenic attack. Proc Natl Acad Sci USA 88: 9969–9973 (1991).PubMedGoogle Scholar
  17. 17.
    Enyedi AJ, Yalpani N, Silverman P, Raskin I: Localisation, conjugation and function of salicylic acid in tobacco during the hypersensitive reaction to tobacco mosaic virus. Proc Natl Acad Sci USA 89: 2480–2484 (1992).PubMedGoogle Scholar
  18. 18.
    Enyedi AJ, Yalpani N, Silverman P, Raskin I: Signal molecules in systemic plant resistence to pathogens and pests. Cell 70: 879–886 (1992).CrossRefPubMedGoogle Scholar
  19. 19.
    Enyedi AJ, Raskin I: Induction of UDP-glucose: salicylic acid glucosyltransferase activity in tobacco mosaic virus-inoculated tobacco (Nicotiana tabacum) leaves. Plant Physiol 101: 1375–1380 (1993).PubMedGoogle Scholar
  20. 20.
    Facchini PJ, Chappell J: Gene family for an elicitor-induced sesquiterpene cyclase in tobacco. Proc Natl Acad Sci USA 89: 11088–11092 (1992).PubMedGoogle Scholar
  21. 21.
    Falkenstein E, Groth B, Mithöfer, Weiler EW: Methyljasmonate and α-linolenic acid are potent inducers of tendril coiling. Planta 185: 316–322 (1991).Google Scholar
  22. 22.
    Farmer EE, Ryan RA: Interplant communication; airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc Natl Acad Sci USA 87: 7713–7716 (1990).PubMedGoogle Scholar
  23. 23.
    Firmin JL, Wilson KE, Rossen L, Johnston AWB: Flavonoid activation of nodulation genes in Rhizobium reversed by other compounds present in the plant. Nature 324: 90–92 (1986).Google Scholar
  24. 24.
    Fliegmann J, Schröder G, Schanz S, Britsch L, Schröder J: Molecular analysis of chalcone and dihydropinosylvin synthase from Scots pine (Pinus sylvestris), and differential regulation of these and related enzyme activities in stressed plants. Plant Mol Biol 18: 489–503 (1992).PubMedGoogle Scholar
  25. 25.
    Gaffney T, Friedrich L, Vernooij B, Negrotto D, Nye G, Uknes S, Ward E, Kessman H, Ryals J: Requirement of salicyclic acid for induction of systemic acquired resistance. Science 261: 754–756 (1993).Google Scholar
  26. 26.
    Galneder E, Rüffer M, Wanner, Tabata M, Zenk MH: Alternative final steps in berberine biosynthesis in Coptis and Thalictrum cell cultures. Plant Cell Rep 7: 1–4 (1988).CrossRefGoogle Scholar
  27. 27.
    Gershenzon J, Croteau R: Regulation of monoterpene biosynthesis in higher plants. In: Towers GHN, Stafford HA (eds) Biochemistry of the Mevalonic Acid. Pathway to Terpenoids, pp. 99–160. Plenum Press, New York (1990).Google Scholar
  28. 28.
    Gestetner B, Conn EE: The 2-hydroxylation of trans-cinnamic acid by chloroplasts from Melilotus alba Desr. Arch Biochem Biophys 163: 617–624 (1974).PubMedGoogle Scholar
  29. 29.
    Goff SA, Klein TM, Roth BA, Fromm ME, Cone KC, Radicella JP, Chandler VL: Transactivation of anthocyanin biosynthetic genes following transfer of B regulatory genes into maize tissues. EMBO J 9: 2517–2522 (1990).PubMedGoogle Scholar
  30. 30.
    Gunia W, Hinderer W, Wittkampf U, Barz W: Elicitor induction of cytochrome P450 monooxygenases in cell suspension cultures of chickpea (Cicer avietinum L.) and their involvement in pterocarpan phytoalexin biosynthesis. Z Naturforsch 46C: 58–66 (1991).Google Scholar
  31. 31.
    Gunlach H, Müller MJ, Kutchan TM, Zenk MH: Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proc Natl Acad Sci USA 89: 2389–2393 (1992).PubMedGoogle Scholar
  32. 32.
    Hain R, Bieseler B, Kindl H, Schröder G, Stödeer R: Expression of a stilbene synthase in Nicotiana tabacum results in synthesis of the phytoalexin, resveratrol. Plant Mol Biol 15: 325–335 (1990).PubMedGoogle Scholar
  33. 33.
    Hain R, Reif H-J, Krause E, Langebartels R, Kindl H, Vornam B, Wiese W, Schmelzer E, Schreier PH, Stöcker RH, Stenzel K: Disease resistance results from foreign phytoalexin expression in a novel plant. Nature 361: 153–156 (1993).CrossRefPubMedGoogle Scholar
  34. 34.
    Hahlbrock K., Grisebach H: Enzymatic controls in the biosynthesis of lignin and flavonoids. Annu Rev Plant Physiol 30: 105–130 (1979).CrossRefGoogle Scholar
  35. 35.
    Hamill JD, Rhodes MJC: Manipulating secondary metabolism in culture. In: Grierson D (ed) Biosynthesis and Manipulation of Plant Products, Plant Biotechnology Series Vol 3, pp. 178–209. Chapman and Hall, London (1992).Google Scholar
  36. 36.
    Harborne JB, Williams CA: Flavone and flavonol glycosides. In: Harborne JB, Mabry TJ, Mabry H (eds) The Flavonoids, pp. 376–441. Chapman and Hall, London (1975).Google Scholar
  37. 37.
    Harborne JB: Introduction to Ecological Biochemistry, 3rd ed Academic Press, London (1989).Google Scholar
  38. 38.
    Hart JH: Role of phytostilbenes in decay and disease resistance. Annu Rev Phytopath 19: 70–104 (1981).Google Scholar
  39. 39.
    Hashimoto T, Kohno J, Yamada Y: Epoxidation in vivo of hyoscyamine to scopolamine does not involve a dehydration step. Plant Physiol 84: 144–147 (1987).Google Scholar
  40. 40.
    Hashimoto T, Nakajima K, Ongena G, Yamada Y: Two tropinone reductases with distinct stereospecificities from cultured roots of Hyoscyamus niger. Plant Physiol 100: 836–845 (1992).Google Scholar
  41. 41.
    Jones CG, Firn RD: On the evolution of plant secondary chemical diversity. Phil Trans Roy Soc Lond 333: 273–280 (1991).Google Scholar
  42. 42.
    Jones CG, Lawton JH: Plant chemistry and insect species richness of British Umbellifers. J Anim Ecol 60: 767–777 (1991).Google Scholar
  43. 43.
    Klick S, Herrman K: Glucosides and glucose esters of hydroxybenzoic acids in plants. Phytochemistry 27: 2177–2180 (1988).CrossRefGoogle Scholar
  44. 44.
    Koda Y, Kiruta Y, Tsujino Y, Sakamura S, Yoshihara T: Potato tuber-inducing activities of jasmonic acid and related compounds. Phytochemistry 30: 1435–1438 (1991).CrossRefGoogle Scholar
  45. 45.
    Kossel H: Über die chemische Zusammensetzung der Zelle. Arch Physiol Physiol Abt, Arch Anat Physiol: 181–186 (1891).Google Scholar
  46. 46.
    Kuhn DN, Chappell J, Boudet, Hahlbrock K: Induction of phenylalanine ammonia-lyase and 4-coumarate: CoA ligase in cultured plant cells by UV light and fungal elicitor. Proc Natl Acad Sci USA 81: 1102–1106 (1984).Google Scholar
  47. 47.
    Lamb CJ, Ryals JA, Ward ER, Dixon RA: Emerging strategies for enhancing crop resistance to microbial pathogens. Bio/technology 10: 1436–1444 (1992).CrossRefPubMedGoogle Scholar
  48. 48.
    Lee K, Dudley MW, Hess KM, Lynn DG, Joerger RD, Binns AN: Mechanism of activation of Agrobacterium virulence genes: Identification of phenol-binding proteins. Proc Natl Acad Sci USA 89: 8666–8670 (1992).PubMedGoogle Scholar
  49. 49.
    Leon J, Yalpani N, Raskin I: Viral infection induces benzoic acid 2-hydroxylase activity in tobacco. Plant Physiol 102: 20 (1993).Google Scholar
  50. 50.
    Loake GJ, Faktor O, Lamb CJ, Dixon RA: Combination of H-box [CCTACC(N)7CT] and G-box [CACGTG] cis elements is necessary for feed-forward stimulation of a chalcone synthase promoter by the phenylpropanoid-pathway intermediate, p-coumaric acid. Proc Natl Acad Sci USA 89: 9230–9234 (1992).PubMedGoogle Scholar
  51. 51.
    Lois AF, West CA: Regulation of expression of the casbene synthase gene during elicitation of castor bean seedlings with pectic fragments. Arch Biochem Biophys 276: 270–27 (1990).PubMedGoogle Scholar
  52. 52.
    Luckner M: Secondary Metabolism in Microorganisms: Plants and Animals, 3rd ed. Springer-Verlag, Berlin (1990).Google Scholar
  53. 53.
    Lynn DG, Chang M: Phenolic signals in cohabitation: implications for plant development. Annu Rev Plant Physiol Mol Biol 41: 497–526 (1990).CrossRefGoogle Scholar
  54. 54.
    Malamy J, Carr JP, Klessig DF, Raskin I: Salicylic acid: a likely endogenous signal in the resistance response of tobacco to viral infection. Science 250: 1002–1004 (1990).Google Scholar
  55. 55.
    Malamy, Hennig J, Klessig DF: Temperature-dependent induction of salicylic acid and its conjugates during the resistance response to tobacco mosaic virus infection. Plant Cell 4: 359–366 (1992).CrossRefPubMedGoogle Scholar
  56. 56.
    van der Meer IM, Spelt CE, Mol JNM, Stuitje AR: Promoter analysis of the chalcone synthase(chsA) gene of Petunia hybrida: a 67 bp promoter region directs flower-specific expression. Plant Mol Biol 15: 95–109 (1990).CrossRefPubMedGoogle Scholar
  57. 57.
    van der Meer IM, Stam ME, van Tunen AJ, Mol JNM, Stuitje AR: Antisense inhibition of flavonoid biosynthesis in petunia anthers results in male sterility. Plant Cell 4: 253–262 (1992).PubMedGoogle Scholar
  58. 58.
    Métraux JP, Signer H, Ryals J, Ward E, Wyss-Benz M, Gaudin J, Rashdorf K, Schmid E, Blum W, Inverardi B: Increase in salicylic acid at the time of onset of systemic acquired resistence in cucumber. Science 250: 1004–1006 (1990).Google Scholar
  59. 59.
    Mo Y, Nagel C, Taylor LP: Biochemical complementation of chalcone synthase mutants defines a role of flavonols in functional pollen. Proc Natl Acad Sci USA 89: 7213–7217 (1992).PubMedGoogle Scholar
  60. 60.
    Mueller MJ, Brodschelm W, Spannagl E, Zenk MH: Signalling in the elicitation process is mediated through the octadecanoid pathway leading to jasmonic acid. Proc Natl Acad Sci USA 90: 7490–7494 (1993).PubMedGoogle Scholar
  61. 61.
    Muller KO, Borger H: Experimentelle Untersuchungen über die Phytophthora-Resistenz der Kartoffel. Arb Biol Abt (Ansl-Reichstanst) Berl 23: 189–231 (1941).Google Scholar
  62. 62.
    Nahrstedt A: The significance of secondary metabolites for interactions between plants and insects. Planta Med 55: 33–338 (1989).Google Scholar
  63. 63.
    Portsteffen A, Dräger B, Nahrstedt A: Two tropinone reducing enzymes from Datura stramonium transformed root cultures. Phytochemistry 31: 1135–1138 (1992).CrossRefGoogle Scholar
  64. 64.
    Putnam AR, Tang C-S: The Science of Allelopathy. Wiley, New York (1986).Google Scholar
  65. 65.
    Raskin I, Ehmann A, Melander WR, Meeuse BJD: Salicylic acid: a natural inducer of heat production in Arum lilies. Science 237: 1601–1602 (1987).Google Scholar
  66. 66.
    Rasmussen JB, Hammerschmidt R, Zook MN: Systemic induction of salicylic acid accumulation in cucumber after inoculation with Pseudomonas syringae pv. syringae. Plant Physiol 97: 1342–1347 (1991).Google Scholar
  67. 67.
    Rhoades DM, McIntosh L: Isolation and characterisation of a cDNA clone encoding an alternative oxidase protein of Sauromatum gluttatum (Schott). Proc Natl Acad Sci USA 88: 2122–2126 (1991).PubMedGoogle Scholar
  68. 68.
    Rhoades DM, McIntosh L: The salicylic acid-inducible alternative oxidase gene aox 1 and genes encoding pathogenesis-related proteins share regions of sequence similarity in their promoters. Plant Mol Biol 21: 615–624 (1993).PubMedGoogle Scholar
  69. 69.
    Rhodes MJC, Robins RJ: The use of plant cell cultures in the study of metabolism. In: Davies DD (ed) The Biochemistry of Plants, vol 13, pp. 65–125. Academic Press, New York (1987).Google Scholar
  70. 70.
    Robins RJ, Parr AJ, Payne J, Walton NJ, Rhodes MJC: Factors regulating tropane-alkaloid production in a transformed root culture of a Datura candida × D. aurea hybrid. Planta 181: 414–422 (1990).CrossRefGoogle Scholar
  71. 71.
    Robins RJ, Bachmann P, Robinson T, Rhodes MJC, Yamada Y: The formation of 3α- and 3β-acetoxytropanes by Datura stramonium transformed roots involves two independent acetyl-CoA-dependent acyltransferases. FEBS Lett 292: 293–297 (1991).CrossRefPubMedGoogle Scholar
  72. 72.
    Robins RJ, Bachmann P, Peerless ACJ, Rabot S: Esterification reactions in the biosynthesis of tropane alkaloids in transformed root cultures. Plant Cell Tiss Organ Cult, in press (1993).Google Scholar
  73. 73.
    Sato F, Takeshita N, Fitchen JH, Fujiwara H, Yamada Y: S-Adenosyl-l-methionine: scoulerine-9-methyltransferase from cultured Coptis japonica cells. Phytochemistry 32: 659–664 (1993).CrossRefGoogle Scholar
  74. 74.
    Schnitzler J-P, Madlung J, Rose A, Seitz HU: Biosynthesis of p-hydroxybenzoic acid in elicitor-treated carrot cell cultures. Planta 188: 594–600 (1992).CrossRefGoogle Scholar
  75. 75.
    Schröder G, Brown JWS, Schröder J: Molecular analysis of resveratrol synthase: cDNA, genomic clones and relationship to chalcone synthase. Eur J Biochem 172: 161–169 (1988).PubMedGoogle Scholar
  76. 76.
    Schulz M, Schnabl H, Manthe B, Schweihofen B, Casser I: Uptake and detoxification of salicylic acid by Vicia faba and Fagopyrum esculentum. Phytochemistry 33: 291–294 (1993).CrossRefGoogle Scholar
  77. 77.
    Spencer PA, Towers GHN: Specificity of signal compounds detected by Agrobacterium tumefaciens. Phytochemistry 27: 2781–2789 (1988).CrossRefGoogle Scholar
  78. 78.
    Spencer PA, Towers GHN: Restricted occurrence of acetophenone signal compounds. Phytochemistry 30: 2933–2937 (1991).CrossRefGoogle Scholar
  79. 79.
    Stachel SE, Messens E, Van Montagu M, Zymbryski P: Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318: 624–629 (1985).Google Scholar
  80. 80.
    Stahl E: Pflanzen und Schnecken, Biologische Studie über die Schutzmittel der Pflanzen gegen Schneckenfrass. Jenaische Z Naturwiss 22: 657–684 (1988).Google Scholar
  81. 81.
    Staswick PE, Su W, Howell SH: Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant. Proc Natl Acad Sci USA 89: 6837–6840 (1992).PubMedGoogle Scholar
  82. 82.
    Stryer L: Biochemistry, 3rd ed. W.H. Freeman, New York (1988).Google Scholar
  83. 83.
    Svoboda GH, Blake DA: In: Taylor WI, Farnsworth NR (eds). The Catharanthus Alkaloids, pp. 454–83. Marcel Dekker, New York (1975).Google Scholar
  84. 84.
    Taylor LP, Jorgensen R: Conditional male fertility in chalcone synthase-deficient petunia. J Hered 83: 11–17 (1992).Google Scholar
  85. 85.
    Ueda J, Kato: Isolation and identification of a senescence-promoting substance from wormwood (Artemisia absinthium L.). Plant Physiol 66: 246–249 (1980).Google Scholar
  86. 86.
    VanEtten HD, Matthews DF, Matthews PS: Phytoalexin detoxification: importance for pathogenicity and practical implications. Annu Rev Phytopath 27: 143–164 (1989).CrossRefGoogle Scholar
  87. 87.
    Varin L, Deluca V, Ibrahim RK, Brisson N: Molecular characterisation of two flavonol sulphotransferases. Proc Natl Acad Sci USA 89: 1286–1290 (1992).PubMedGoogle Scholar
  88. 88.
    Vick BA, Zimmerman DC: The biosynthesis of jasmonic acid: a physiological role for lipoxygenase. Biochem Biophys Res Commun 111: 470–477 (1983).PubMedGoogle Scholar
  89. 89.
    Vick BA, Zimmerman DC: Biosynthesis of jasmonic acid by several plant species. Plant Physiol 75: 458–461 (1984).Google Scholar
  90. 90.
    Ward ER, Uknes SJ, Williams SC, Dincher SS, Wiederhold DL, Alexander DC, Ahl-Goy P, Métraux J-P, Ryals JA: Coordinate gene activity in response to agents that induce systemic acquired resistance. Plant Cell 3: 1085–1094 (1991).CrossRefPubMedGoogle Scholar
  91. 91.
    Waterman PG: Roles of secondary metabolites in plants. In: Secondary Metabolites: Their Function and Evolution, pp. 255–275. Ciba Foundation Symposium 171. Wiley, Chichester (1992).Google Scholar
  92. 92.
    Weiler EW, Albrecht T, Groth B, Xia Z-Q, Luxem M, Liss H, Andert L, Spengler P: Evidence for the involvement of jasmonates and their octadecanoid precursors in the tendril coiling response of Bryonia dioica. Phytochemistry 32: 591–600 (1993).CrossRefGoogle Scholar
  93. 93.
    Williams CA, Harborne JB, Greenham J, Eagles J, Markham KR: Six further lipophillic flavonols from the leaf of Vellozia stipitata. Phytochemistry 32: 731–735 (1993).CrossRefGoogle Scholar
  94. 94.
    Wink M: Physiology of the accumulation of secondary metabolites with special reference to alkaloids. In: Cell Culture and Somatic Cell Genetics of Plants, vol 4, pp. 17–42. Academic Press, New York (1987).Google Scholar
  95. 95.
    Wink M: Plant breeding: importance of plant secondary metabolites for protection against pathogens and herbivores. Theor Appl Genet 75: 225–233 (1988).CrossRefGoogle Scholar
  96. 96.
    Yalpani N, Balke NE, Schulz M: Induction of UDP-glucose: salicylic acid glucosyltransferase in oat roots. Plant Physiol 100: 1114–1119 (1992).Google Scholar
  97. 97.
    Yalpani N, Schulz M, Davis MP, Balke NE: Partial purification and properties of an inducible uridine 5′-diphosphate-glucose: salicylic acid glucosyltransferase from oat roots. Plant Physiol 100: 457–463 (1992).Google Scholar
  98. 98.
    Yamada Y, Okada N: Biotransformation of tetrahydroberberine to berberine by enzymes prepared from cultured Coptis japonica. Phytochemistry 24: 63–65 (1985).CrossRefGoogle Scholar
  99. 99.
    Yamagishi K, Mitosumori C, Takahashi K, Fujino K, Koda Y, Kikuta Y: Jasmonic acid-inducible gene expression of a Kunitz-type proteinase inhibitor in potato tuber disks. Plant Mol Biol 21: 539–541 (1993).CrossRefPubMedGoogle Scholar
  100. 100.
    Yang SF, Hoffman NE: Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol 35: 155–189 (1984).Google Scholar
  101. 101.
    Yazaki K, Heide L, Tabata M: Formation of p-hydroxybenzoic acid from p-coumaric acid by cell free extracts of Lithospermum erythrorhizon cell cultures. Phytochemistry 30: 2233–2236 (1991).CrossRefGoogle Scholar
  102. 102.
    Ylstra B, Touraev A, Moreno RMB, Stöger E, van Tunen AJ, Vicente O, Mol JNM, Heberle-Bors E: Flavonols stimulate development, germination, and tube growth of tobacco pollen. Plant Physiol 100: 902–907 (1992).Google Scholar
  103. 103.
    Zenk MH, Rüffer M, Kutchan TM, Galneder E: Biotechnological approaches to the production of isoquinoline alkaloids. In: Applications of Plant Cell and Tissue Culture, pp. 213–233. Ciba Foundation Symposium No 137, (1988).Google Scholar
  104. 104.
    Zimmerman DC, Feng P: Characterisation of a prostaglandin-like metabolism of linoleic acid produced by a flaxseed extract. Lipids 13: 313–316 (1978).Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • M. J. C. Rhodes
    • 1
  1. 1.AFRC Institute of Food ResearchNorwich Research ParkNorwich, NorfolkUK

Personalised recommendations