Hydrobiologia

, Volume 204, Issue 1, pp 645–654 | Cite as

Agaroids from New Zealand members of the Gracilariaceae (Gracilariales, Rhodophyta) — a novel dimethylated agar

  • Richard H. Furneaux
  • Ian J. Miller
  • Thomas T. Stevenson
Chemical structure

Abstract

Polysaccharide extracts from four New Zealand members of the Gracilariaceae have been characterized by 13C-NMR spectroscopy and GLC analysis of alditol acetate derivatives prepared using a new double hydrolysis-reduction procedure. All were based on variously substituted repeating disaccharide units of agarobiose and ≤ 20% of its ‘precursor’ containing l-galactose-6-sulfate. Gracilaria truncata yielded a firm gelling agar with 67% methylation on the 6-position of the d-galactose residues. The other extracts belong to a new class of agar molecules having methylation on both the 6-position of the d-galactose units and the 2-position of the l-sugar units. The Curdiea coriacea polysaccharide displayed this double methylation almost completely (≥ 96 %); the alkali-modified polymer thus had only two free hydroxy-groups per disaccharide repeat unit, yet still gave a firm gel. The Curdiea flabellata and Melanthalia abscissa extracts had this double methylation pattern but to a lesser extent, and additional xylosyl branch units on up to 18% of the repeating disaccharide units.

Key words

agar composition Curdiea coriacea Curdiea flabellata Gracilaria truncata Gracilariaceae Melanthalia abscissa polysaccharide seaweed 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, N. S., T. C. S. Dolan & D. A. Rees, 1968. Carrageenans. Part III. Oxidative hydrolysis of methylated κ-carrageenan and evidence for a masked repeating structure. J. chem. Soc. (C): 596–601.Google Scholar
  2. Araki, C. & S. Hirase, 1953. Chemical constitution of agaragar. XV. Exhaustive mercaptolysis of agar-agar. Bull. chem. Soc. Japan 26: 463–467.Google Scholar
  3. Bock, K., C. Pedersen & H. Pedersen, 1984. Carbon-13 nuclear magnetic resonance data for oligosaccharides. Adv. Carbohydr. Chem. Biochem. 42: 193–225.Google Scholar
  4. Brasch, D. J., C. T. Chuah & L. D. Melton, 1981. A 13C-NMR study of some agar-related polysaccharides from New Zealand seaweeds. Aust. J. Chem. 34: 1095–1105.Google Scholar
  5. Brasch, D. J., C. T. Chuah & L. D. Melton, 1983. The agar type polysaccharide from the red alga Gracilaria secundata. Carbohydr. Res. 115: 191–198.Google Scholar
  6. Chapman, V. J., 1979. The marine algae of New Zealand. III: Rhodophyceae, Issue 4: Gigartinales. J. Cramer, Vaduz: 279–510.Google Scholar
  7. Ciucanu, I. & F. Kerek, 1984. A simple and rapid method for the permethylation of carbohydrates. Carbyhydr. Res. 131: 209–217.Google Scholar
  8. Craigie, J. S. & Z. C. Wen, 1984. Effects of temperature and tissue age on gel strength and composition of agar from Gracilaria tikvahiae (Rhodophyceae). Can. J. Bot. 62: 1665–1670.Google Scholar
  9. Duckworth, M., K. C. Hong & W. Yaphe, 1971. The agar polysaccharides of Gracilaria species. Carbohydr. Res. 18: 1–9.Google Scholar
  10. Furneaux, R. H. & I. J. Miller, 1985. Water soluble polysaccharides from the New Zealand red algae in the family Phyllophoraceae. Bot. mar. 28: 419–425.Google Scholar
  11. Furneaux, R. H. & T. T. Stevenson, 1990. The xylogalactan sulfate from Chondria macrocarpa (Rhodophyta, Ceramiales). Hydrobiologia 204/205 (Proc. int. Seaweed Symp. 13): 615–620.Google Scholar
  12. Jansson, P. E., L. Kenne, H. Liedgren, B. Lindberg & J. Lonngren, 1976. A practical guide to the methylation analysis of carbohydrates. Chem. Comm. Univ. Stockholm 8: 1–76.Google Scholar
  13. Karamanos, Y., M. Ondarza, F. Bellanger, D. Christiaen & S. Moreau, 1989. The linkage of 4-O-methyl-L-galactopyranose in the agar polymers from Gracilaria verrucosa. Carbohydr. Res. 187: 93–101.Google Scholar
  14. Lahaye, M., C. Rochas & W. Yaphe, 1986. A new procedure for determining the heterogeneity of agar polymers in the cell walls of Gracilaria spp. (Gracilaria, Rhodophyta). Can. J. Bot. 64: 579–585.Google Scholar
  15. Lahaye, M., J. F. Revol, C. Rochas, J. McLachlan & W. Yaphe, 1988. The chemical structure of Gracilaria crassissima (P. et H. Crouan in Schramm et Mazé) P. et H. Crouan in Schramm et Mazé and G. tikvahiae McLachlan (Gigartinales, Rhodophyta) cell-wall polysaccharides. Bot. mar. 31: 491–501.Google Scholar
  16. Lahaye, M. & W. Yaphe, 1988. Effects of seasons on the chemical structure and gel strength of Gracilaria pseudoverrucosa agar (Gracilariaceae, Rhodophyta). Carbohydr. Polym. 8: 285–301.Google Scholar
  17. Miller, I. J. & R. H. Furneaux, 1982. Agars from New Zealand red algae in the family Gelidiaceae: a structural study. New Zealand J. Sci. 25: 15–18.Google Scholar
  18. Miller, I. J. & R. H. Furneaux, 1987a. Chemical characteristics of the galactans from the forms of Gracilaria secundata from New Zealand. Bot. mar. 30: 427–435.Google Scholar
  19. Miller, I. J. & R. H. Furneaux, 1987b. The chemical substitution of the agar-type polysaccharide from Gracilaria secundata f. pseudoflagellifera Proc. int. Seaweed Symp. 12: 523–529.Google Scholar
  20. Nelson, W. A., 1987. The New Zealand species of Gracilaria Greville (Rhodophyta, Gigartinales). New Zealand J. Bot. 25: 87–98.Google Scholar
  21. Nicolaisen, F. M., I. Meyland & K. Schaumberg, 1980. 13C-NMR Spectra at 67.9 MHz of aqueous solutions of agarose and partly 6-O-methylated agarose at 95 °C. Acta chem. scand. B34: 103–107.Google Scholar
  22. Preuss, A. & H.-P. Thier, 1982. Quantitative analyse natürlicher dickungsmittel durch methanolyse und capillargas-chromatographie. Z. Lebensm. Unters Forsch. 175: 93–100.Google Scholar
  23. Rees, D. A., 1961. Estimation of the relative amounts of isomeric sulphate esters in some sulphated polysaccharides. J. chem. Soc.: 5168–5171.Google Scholar
  24. Sweet, D. P., R. H. Shapiro & P. Albersheim, 1975. Quantitative analysis by various g.l.c. response-factor theories for partially methylated and partially ethylated alditol acetates. Carbohydr. Res. 40: 217–225.Google Scholar
  25. Truong, H. H., P. Lesecq, I. Karamanos, Y. Vo Quang & D. Christiaen, 1988. Chemical characterization of agar from an agarophyte grown in the lagoon of Binh Tri Thien (Vietnam). Bot. mar. 31: 289–293.Google Scholar
  26. Usov, A. I., E. G. Ivanova & A. S. Shashkov, 1983. Polysaccharides of algae XXXIII. Isolation and 13C-NMR spectral study of some new gel-forming polysaccharides from Japan red seaweeds. Bot. mar. 26: 285–294.Google Scholar
  27. Yaphe, W. & G. P. Arsenault, 1965. Improved resorcinol reagent for the determination of fructose and 3,6-anhydrogalactose in polysaccharides. Analyt. Biochem. 13: 143–148.Google Scholar
  28. Young, K., M. Duckworth & W. Yaphe, 1971. The structure of agar. Part III. Pyruvic acid, a common feature of agars from different agarophytes. Carbohydr. Res. 16: 446–448.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • Richard H. Furneaux
    • 1
  • Ian J. Miller
    • 1
  • Thomas T. Stevenson
    • 1
  1. 1.DSIRChemistry DivisionPetoneNew Zealand
  2. 2.Vela Agarose Ltd.Lower HuttNew Zealand

Personalised recommendations