Advertisement

Hydrobiologia

, Volume 204, Issue 1, pp 301–308 | Cite as

European bioconversion projects and realizations for macroalgal biomass : Saint-Cast-Le-Guildo (France) experiment

  • Philippe Morand
  • Roger H. Charlier
  • Jacques Mazé
Resources

Abstract

Proliferation of macroalgae is a world-wide problem with 50,000 m3 of drift Ulva harvested per year in Brittany and about 1.0 to 1.2 million tons growing in the Venice lagoon. This biomass may be treated by bioconversion (aerobic or anaerobic fermentation) to give useful products (gas, fertilizers or others) and to remove a source of environmental pollution. Such a treatment also may be applied to cultivated or harvested seaweds and to seaweed industry residues.

Studies of seaweed methanization showed Laminaria an especially good substrate and Ulva a possible substrate. Research led to a defined way of treating drift algae, encompassing natural hydrolysis and pressing with methanization of the juices.

The most advanced full-scale realization for algal biomass utilization is the C.A.T.-Quatre-Vaulx composting plant in Saint-Cast-Le-Guildo (Brittany, France). It produced from seaweed, wood and animal dung a biological quality compost that is competitive with the traditional market products.

Key words

digester composting Europe methanization phycocolloid extraction residues seaweed stranded macroalgae Ulva 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bird, K. T., 1987. Cost analyses of energy from marine biomass. In K. T. Bird & P. H. Benson (eds), Seaweed Cultivation for Renewable Resources. Elsevier, Amsterdam: 327–350.Google Scholar
  2. Briand, X., 1989. Prolifération de l'algue verte Ulva sp. en Baie de Lannion (France). Etude d'une nuisance et de son traitement par fermentation anaérobie. Th. 3e cycle: Biologic et Physiologic végétale. Lille, France, 210 pp.Google Scholar
  3. Briand, X. & P. Morand, 1987. Ulva, stranded algae: a way of depollution through methanisation. In G. Grazi, B. Delmon, J.-F. Molle & H. Zibetta (eds), Biomass for Energy and Industry, 4th E.C. Conference. Elsevier Appl. Sci., London: 834–839.Google Scholar
  4. Buttermore, R. E., 1977. Eutrophication of an impounded estuarine lagoon. Mar. Poll. Bull. 8: 13–15.Google Scholar
  5. Carpentier, B., 1986. Digestion anaérobie de la biomasse algale: les résidus de l'extraction de l'acide alginique. Les ulves de marée verte. Th. 3e cycle: Algologie. Paris, France, 101 pp.Google Scholar
  6. Carpentier, B., C. Festino & C. Aubart, 1988. Anaerobic digestion of flotation sludges from the alginic acid extraction process. Biol. Wastes 23: 269–278.Google Scholar
  7. Chassany de Casabianca, M.-L., 1984. Analyse de problems écologiques liés à la récolte de biomasse algale en milieu lagunaire. Rapport de contrat n° 81.G.0983. Action concertée: écologie et aménagement rural. M.R.T., Paris, France 80 pp.Google Scholar
  8. Chynoweth, D. P., K. F. Fannin & V. J. Srivastava, 1987. Biological gasification of marine algae. In K. T. Bird & P. H. Benson (eds), Seaweed Cultivation for Renewable Resources. Elsevier, Amsterdam: 285–303.Google Scholar
  9. Gabrielson, J. O., P. B. Birsh & K. S. Hamel, 1983. Decomposition of Cladophora. II. In vitro studies of nitrogen and phosphorus regeneration. Bot. mar. 26: 173–179.Google Scholar
  10. Goes, J., 1988. Methanization of algal residues after extraction of agar-agar from Gelidium. In P. Morand & E. H. Schulte (eds), Aquatic primary biomass (marine macroalgae): biomass conversion, removal and use of nutrients. I. Proceedings of the 1st Workshop of the COST 48 Sub-Group 3. L'Houmeau, France. February 12–14, 1987. E.E.C., Brussels: 111–113.Google Scholar
  11. Jackson, G. A., 1977. Biological constraints of seaweds culture. In A. Mitsui, S. Miyachi, A. San Pietro & S. Tomura (eds), Biological Solar Energy Conversion. Academic Press, New-York: 437–448.Google Scholar
  12. Jensen, A., 1985. Possibilities and problems of energy production from macroalgae. In H. Egnéus & A. Ellegård (eds), Bioenergy 84. Elsevier Appl. Sci., London: 143–153.Google Scholar
  13. Lenzi, M. & V. Bombelli, 1985. Prime valutazioni della biomassa macrofitica nella laguna di Orbetello (GR) inconsiderazione di uno sfruttamento industriale. Nova Thalassia 7 (suppl. 3): 355–360.Google Scholar
  14. Manclière, P., 1985. Méthanisation des algues: de l'énergie à revendre? Équinoxe 3: 7–12.Google Scholar
  15. Missoni, G. & M. Mazzagardi, 1985. Production of algal biomass in Venice Lagoon, environmental and energetic aspects. In W. Palz, J. Coombs & D. O. Hall (eds), Energy from Biomass. 3rd E.C. Conference. Venice, Italy. 25–29 March 1985. Elsevier Appl. Sci., London: 384–386.Google Scholar
  16. Morand, P., B. Carpentier, R. H. Charlier, J. Mazé, M. Orlandini, B. A. Plunkett & J. de Waart, 1990. Bioconversion. In M. D. Guiry & G. Blunden (eds), Seaweed Resources in Europe — Uses and Potential. Heyden & Son, London.Google Scholar
  17. Orlandini, M., 1988. Harvesting of algae in polluted lagoons of Venice and Orbetello and their effective and potential utilization. In J. de Waart & P. H. Nienhuis (eds), Aquatic Primary Biomass (Marine Macroalgae): Biomass Conversion, Removal and Use of Nutrients. II. Proceedings of the 2nd Workshop of the COST 48 Sub-Group 3. Zeist & Yerseke, The Netherlands. October 25–27, 1988. E.E.C., Brussels: 20–23.Google Scholar
  18. Pain, I. & J. Pain, 1979. Les méthodes de Jean Pain ou un autre jardin (6e ed.). Pain, Villecroze, France, 52 pp.Google Scholar
  19. Potoky, P., 1988. Seaweds for making fertilizing substances in France. In P. Morand & E. H. Schulte (eds), Aquatic Primary Biomass (Marine Macroalgae): Biomass Conversion, Removal and Use of Nutrients. I. Proceedings of the 1st Workshop of the COST 48 Sub-Group 3. L'Houmeau, France. February 12–14, 1987. E.E.C., Brussels: 17–18.Google Scholar
  20. Potoky, P. & J. Mazé, 1988. Effect of seaweed inclusion in compost preparation on the quality of the composts obtained. In P. Morand & E. H. Schulte (eds), Aquatic Primary Biomass (Marine Macroalgae): Biomass Conversion, Removal and Use of Nutrients. I. Proceedings of the 1st Workshop of the COST 48 Sub-Group 3. L'Houmeau, France. February 12–14, 1987. E.E.C., Brussels: 67–86.Google Scholar
  21. Rosenberg, R., 1985. Eutrophication. The future marine coastal nuisance? Mar. Pollut. Bull. 6: 227–231.Google Scholar
  22. Sfriso, A., B. Pavoni, A. Marcomini & A. A. Orio, 1988. Annual variations of nutrients in the lagoon of Venice. Mar. Pollut. Bull. 19: 54–60.Google Scholar
  23. Tubbs, C. R. & J.-M. Tubbs, 1983. Macroalgae mats in Langstone Harbour, Hampshire, England. Mar. Pollut. Bull. 4: 148–149.Google Scholar
  24. Wilcox, H. A., 1977. The ocean food and energy farm project. In P. D. Wilmot & A. Slingerland (eds), Technology Assessment and the Oceans. Proc. Int. Conf. Technol. Assessment. Monaco. October 26, 1975. I.P.C., Guilford, Surrey, U.K.: 67–76.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • Philippe Morand
    • 1
  • Roger H. Charlier
    • 2
  • Jacques Mazé
    • 3
  1. 1.Centre de Recherche en Ecologie marine et AquacultureCNRS-IFREMERL'HoumeauFrance
  2. 2.S.A. SOPEX N. V.AntwerpBelgium
  3. 3.Centre d Aide par le Travail de Quatre-VaulxSaint- Cast-Le-GuildoFrance

Personalised recommendations