Hydrobiologia

, Volume 204, Issue 1, pp 99–104 | Cite as

Antiviral carbohydrates from marine red algae

  • Michael Neushul
Advances in North American seaweed culture

Abstract

It is possible that heparin-like sulfated polysaccharides from red algae, or fractions thereof, might be found to be low-cost, broad-spectrum antiviral agents. The prevailing view among virologists has been that sulfated polysaccharides inhibit viral action by acting only at the surfaces of cells. This perception now is changing with the finding that both the herpes virus (containing DNA) and human immunodeficiency virus (containing RNA) are inhibited by sulfated polysaccharides that act within the cell as well as external to it. Aqueous extracts of many red algae are active against retroviruses. Carrageenan, a common cell wall polysaccharide from red algae, is co-internalized into infected cells with the Herpes simplex virus (HSV), inhibiting the virus. Carrageenan also interferes with fusion (syncytium formation) between cells infected with the human immunodeficiency virus (HIV) and inhibits the specific retroviral enzyme reverse transcriptase.

Key words

AIDS antiviral herpes red algae seaweed sulfated polysaccharide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, R., K. F. Benitz, R. Mankes & I. Rosenblum, 1985. Chronic and subchronic effects of various forms of carrageenan in rats. Ecotoxicol. Envir. Saf. 10: 173–183.Google Scholar
  2. Abrams, D., M. Gottlieb, M. Grieco, M. Speer & S. Bernstein, 1988. AIDS/HIV Experimental Treatment Directory. American Foundation for Aids Research, N.Y., 118 pp.Google Scholar
  3. Alarcon, B., J. C. Lacal, J. M. Fernandez-Sousa & L. Carrasco, 1984. Screening for new compounds with antiherpes activity. Antiviral Res. 4: 231–244.Google Scholar
  4. Bauer, D. J., 1985. A history of the discovery and clinical application of antiviral drugs. Br. med. Bull. 41: 309–314.Google Scholar
  5. Baba, M., R. Pauwels, J. Balzarini, J. Arnout, J. Desmyter & E. De-Clercq, 1988. Mechanism of inhibitory effect of dextran sulfate and heparin on replication of human immunodeficiency virus in vitro. Proc. Natl. Acad. Sci. USA. 85: 6132–6136.Google Scholar
  6. Blunden, G., C. J. Barwell, K. J. Fidgen & K. Jewers, 1981. A survey of some British marine algae for anti-influenza virus activity. Bot. mar. 24: 267–272.Google Scholar
  7. Calvin, N. I. & R. J. Ellis, 1979. Water Soluble Extracts of Certain Marine Red Algae and Processes for Use Thereof. U.S. Patents 4,162,308, and 4,162,309.Google Scholar
  8. Chong, A. S.-F. & C. R. Parish, 1985. Non-immune lymphocyte-macrophage interaction II. Evidence that the interaction involves sulfated polysaccharide recognition. Cell. Immunol. 92: 277–289.Google Scholar
  9. De Clercq, E., J. Descamps, G. Verhelst, R. Walker, A. Jones, P. Torrence & D. Shugar, 1980. Comparative efficacy of antiherpes drugs against different strains of Herpes simplex virus. J. Inf. Dis. 141: 563–574.Google Scholar
  10. Dhargalkar, V. K., T. G. Jagtap & A. G. Untawale, 1980. Biochemical constituents of seaweeds along the Maharashtra coast. Ind. J. Mar. Sci. 9: 297–299.Google Scholar
  11. Delahunty, T., L. Recher & D. Hollander, 1987. Intestinal permeability changes in rodents: A possible mechanism for degraded carrageenan-induced colitis. Fd Chem. Toxic. 25: 113–118.Google Scholar
  12. Dziarski, R., 1989. Enhancement of mixed leukocyte reaction and cytotoxic antitumor responses by heparin. J. Immunol. 143: 356–365.Google Scholar
  13. Ehresmann, D. W., E. F. Deig, M. T. Hatch, L. H. Di Salvo & N. A. Vedros. 1977. Antiviral substances from California marine algae. J. Phycol. 13: 37–40.Google Scholar
  14. Ehresmann, D. W.,E. F. Deig & M. T. Hatch, 1979. Antiviral properties of algal polysaccharides and related compounds. In H. A. Hoppe, T. Levring & Y. Tanaka (eds), Marine Algae in Pharmaceutical Science, W. de Gruyter, N.Y.: 293–302.Google Scholar
  15. Fetter, R. & M. Neushul, 1981. Studies on developing and released spermatia in the red alga, Tiffaniella snyderae (Rhodophyta). J. Phycol. 17: 141–159.Google Scholar
  16. Gonzalez, M. E., B. Alarcon & L. Carrasco, 1987. Polysaccharides as antiviral agents: Antiviral activity of carrageenan. Antimicrob. Agents Chemother. 31: 1388–1393.Google Scholar
  17. Hatch, M. T., D. W. Ehresmann & E. F. Deig, 1979. Chemical characterization and therapeutic evaluation of antiHerpesvirus polysaccharides from species of Dumontiaceae. In H. A. Hoppe, T. Levring & Y. Tanaka (eds), Marine Algae in Pharmaceutical Science. W. de Gruyter, N.Y.: 343–363.Google Scholar
  18. Hodgson, L. M., 1984. Antimicrobial and antineoplastic activity in some South Florida seaweeds. Bot. mar. 28: 387–390.Google Scholar
  19. Hornsey, I. S. & D. Hide, 1974. The production of antimicrobial compounds by British marine algae. 1. Antibiotic producing marine algae. Br. phycol. J. 9: 353–361.Google Scholar
  20. Mitsuya, H., D. J. Looney, S. Kuno, R. Ueno, F. Wong-Staal & S. Broder, 1988. Dextran sulfate suppression of viruses in the HIV family: inhibition of virion binding to CD4 + cells. Science 240: 646–649.Google Scholar
  21. Muller, W. E. G., 1979. Mechanisms of action and pharmacology: Chemical agents. In G. J. Galasso, T. C. Merigan & R. A. Buchanan (eds), Antiviral Agents and Viral Diseases of Man. Raven Press, N.Y.: 77–150.Google Scholar
  22. Nagumo, T. & H. Hoshino, 1988. Heparin inhibits infectivity of human immunodeficiency virus in vitro. Jpn. J. Cancer Res. (Gann) 79: 9.Google Scholar
  23. Nakashima, H, Y. Kido, N. Kobayashi, Y. Motoki, M. Neushul & N. Yamamoto, 1987a. Antiretroviral activity in a marine red alga: reverse transcriptase inhibition by an aqueous extract of Schizymenia pacifica. J. Cancer Res. Clin. Oncol. 113: 413–416.Google Scholar
  24. Nakashima, H., Y. Kido, N. Kobayashi, Y. Motoki, M. Neushul & N. Yamamoto, 1987b. Purification and characterization of an avian myeloblastosis and human immunodeficiency virus reverse transcriptase inhibitor, sulfated polysaccharides extracted from sea algae. Antimicrob. Agents Chemother. 31: 1524–1528.Google Scholar
  25. Nara, P. L. & P. J. Fischinger, 1988. Quantitative infectivity assay for HIV-1 and 2. Nature 332: 469–470.Google Scholar
  26. Neushul, M., 1988. Method for the treatment of AIDS virus and other retroviruses. U.S. Patent no. 4,783,446.Google Scholar
  27. Nonomura, A. L., 1985. Composition of matter from Cryptosiphonia woodii useful for the treatment of Herpes simplex virus. United States Patent no. 4,522,814.Google Scholar
  28. Onderdonk, A. B., 1985. Experimental models for ulcerative colitis. Dig. Dis. Sci. (suppl.) 30: 40S–44S.Google Scholar
  29. Pesando, D. & B. Caram, 1984. Screening of marine algae from the French Mediterranean coast for antibacterial and antifungal activity. Bot. mar. 28: 381–386.Google Scholar
  30. Rada, B., D. Blaskovic, F. Sorm & J. Skoda, 1960. The inhibitory effect of 6-azauracil riboside on the multiplication of vaccinia virus. Experientia 16: 487.Google Scholar
  31. Ragan, M. A., 1984. Bioactivities in marine genera of Atlantic Canada: The unexplored potential. Proc. N. S. Inst. Sci. 34: 83–132.Google Scholar
  32. Richards, J. T., E. R. Kern, L. Glasgow, J. Overall, E. Deig & M. Hatch, 1978. Antiviral activity of extracts from marine algae. Antimicrob. Agents Chemother. 14: 24–30.Google Scholar
  33. Schaffrath, D., H. W. Stuhlsatz & H. Greiling, 1976. Interactions of glycosaminoglycans with DNA and RNA synthesizing enzymes in vitro. Z. Physiol. Chem. 357: 499–508.Google Scholar
  34. Sellin, J. H. & H. Oyarzabal, 1988. Carrageenan-induced colitis alters ion transport in rabbit colon in vitro. In R. P. MacDermott (ed.), Inflammatory Bowel Disease: current status and future approach. Elsevier, N.Y.: 391–396.Google Scholar
  35. Silverstein,A. M.,1989. AHistory of Immunology. Academic Press, N.Y., 422 pp.Google Scholar
  36. Solomon, J. J., K. A. Glatt & W. Okazaki, 1966. Inhibitory effect of heparin on Rous Sarcoma virus. J. Bact. 92: 1855–1856.Google Scholar
  37. Thomson, A. W. & E. F. Fowler, 1981. Carrageenan: a review of its effects on the immune system. Agents Actions 11: 265–273.Google Scholar
  38. Ueno, R. & S. Kuno, 1987. Dextran sulphate, a potent anti-HIV agent in vitro having synergism with zidovudine. Lancet 1: 1379.Google Scholar
  39. Untawale, A. G., N. B. Bhosle & V. K. Dhargalkar, 1977. Properties of phycocolloid extracts from seaweeds of Goa. Ind. J. Mar. Sci. 6: 181–183.Google Scholar
  40. Whyte, J. N. C., R. E. Foreman & R. E. DeWreede, 1984. Phycocolloid screening of British Columbian red algae. Proc. int. Seaweed Symp. 11: 537–541.Google Scholar
  41. Wood, M. J. & A. M. Geddes, 1987. Antiviral Therapy. Lancet 1: 1189–1192.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • Michael Neushul
    • 1
    • 2
  1. 1.Department of Biological SciencesUniversity of CaliforniaSanta BarbaraUSA
  2. 2.Neushul Mariculture IncorporatedGoletaUSA

Personalised recommendations