, Volume 61, Issue 1–3, pp 179–188 | Cite as

Adaptation in perennial coastal plants-with particular reference to heritable variation in Puccinellia maritima and Ammophila arenaria

  • A. J. Gray
Studies on Populations


Perennial species invading the early stages of primary successions face constant, and often rapid, change in their biotic and abiotic environment. The relative abilities of different species to adapt to this change is reflected in the zonation patterns which characterize coastal vegetation. Variation in those species with wide ecological amplitudes, particularly in populations near the boundary of the realized niche, is likely to be particularly revealing.

The pattern of heritable variation in Puccinellia maritima on salt marshes indicates directional selection for traits increasing plant vigour and ‘competitive ability’; presumably the effect of increasing plant density. Adaptation is by both genetic differentiation and phenotypic flexibility, the former being evident in adjacent grazed and ungrazed marshes and the latter in a mosaic of tall and short vegetation types. By contrast variation in Ammophila arenaria on dunes exhibits high levels of phenotypic flexibility, growth in a range of environments indicating that plants from fore-dune populations are higher ‘responders’ than those from mature dunes.

Among the implications of these results, and by comparison with other species, is the fact that, ironically, niche expansion for some salt marsh perennials may require the evolution of an annual strategy, and that a Darwinian selection model may help to explain variation in Ammophila's apparent vigour in dunes of different age.


Adaptation Ammophila Genetic differentiation and phenotypic flexibility Perennial Puccinellia 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbott, R. J., 1976. Variation within common groundsel, Senecio vulgaris L. II. Local differences within cliff populations on Puffin Island. New Phytol. 76: 165–172.Google Scholar
  2. Adam, P., 1981. The vegetation of British salt marshes. New Phytol. 88: 143–196.Google Scholar
  3. Barbour, M. G., 1970. Is any angiosperm an obligate halophyte? Am. Midl. Nat. 84: 105–120.Google Scholar
  4. Barbour, M. G., 1978. The effect of competition and salinity on the growth of a salt marsh plant species. Oecologia 37: 93–99.Google Scholar
  5. Begon, M. & Mortimer, M., 1981. Population Ecology. Blackwell Scientific Publications, Oxford.Google Scholar
  6. Bradshaw, A. D., 1965. Evolutionary significance of phenotypic plasticity in plants. Adv. Genet. 13: 115–155.Google Scholar
  7. Bradshaw, A. D., 1973. Environment and phenotypic plasticity. In: Basic Mechanisms in Plant Morphogenesis. Brookhaven Symposia in Biology 25, pp. 75–94.Google Scholar
  8. Breese, E. L., 1969. The measurement and significance of genotype × environment interactions in grasses. Heredity 24: 27–44.Google Scholar
  9. Breese, E. L., Hayward, M. D. & Thomas, A. C., 1965. Somatic selection in perennial ryegrass. Heredity 20: 367–369.Google Scholar
  10. Cavers, P. B. & Harper, J. L., 1967. The comparative biology of closely related species living in the same area. IX. Rumex: the nature of adaptation to a sea-shore habitat. J. Ecol. 55: 73–82.Google Scholar
  11. Chapman, V. J., 1974. Salt Marshes and Salt Deserts of the World. 2nd ed. Cramer, Lehre.Google Scholar
  12. Eldred, R. A. & Maun, M. A., 1982. A multivariate approach to the problem of decline in vigour of Ammophila. Can. J. Bot. 60: 1371–1380.Google Scholar
  13. Finlay, K. W. & Wilkinson, G. N., 1963. The analysis of adaptation in a plant breeding programme. Aust J. Agric. Res. 14: 742–754.Google Scholar
  14. Freeman, G. H. & Crisp, P., 1979. The use of related variables in explaining genotype-environment interactions. Heredity 42: 1–11.Google Scholar
  15. Gimingham, C. H., 1964. Maritime and sub-maritime communities. In: J. H. Burnett (ed.), The Vegetation of Scotland, pp. 67–142. Oliver & Boyd, Edinburgh.Google Scholar
  16. Gray, A. J., 1972. The ecology of Morecambe Bay. V. The salt marshes of Morecambe Bay. J. App. Ecol. 9: 207–220.Google Scholar
  17. Gray, A. J., 1974. The genecology of salt marsh plants. Hydr. Bull. 8: 152–165.Google Scholar
  18. Gray, A. J., 1977. Reclaimed land. In: R. S. K. Barnes (ed.), The Coastline, pp. 253–270. Wiley & Sons, London.Google Scholar
  19. Gray, A. J., 1981. Habitat-correlated variation in phenotypic plasticity in Marram grass, Ammophila arenaria, and its implications for sand dune stabilisation. J. Sports Turf Res. Inst. 57: 5–6.Google Scholar
  20. Gray, A. J., Parsell, R. J. & Scott, R., 1979. The genetic structure of plant populations in relation to the development of salt marshes. In: R. L. Jefferies & A. J. Davy (eds.), Ecological Processes in Coastal Environments, pp. 43–64. Blackwell Scientific Publications, Oxford.Google Scholar
  21. Gray, A. J. & Scott, R., 1977a. Puccinellia maritima (Huds.) Parl. Biological Flora of the British Isles. J. Ecol. 65: 699–716.Google Scholar
  22. Gray, A. J. & Scott, R., 1977b. The ecology of Morecambe Bay. VII. The distribution of Puccinellia maritima, Festuca rubra and Agrostis stolonifera in the salt marshes. J. Appl. Ecol. 14: 229–241.Google Scholar
  23. Gray, A. J. & Scott, R., 1980. A genecological study of Puccinellia maritima (Huds.) Parl. I. Variation estimated from singleplant samples from British populations. New Phytol. 85: 89–107.Google Scholar
  24. Grime, J. P., 1979. Plant Strategies and Vegetation Processes. Wiley & Sons, Chichester.Google Scholar
  25. Hannon, N. J. & Bradshaw, A. D., 1968. Evolution of salt tolerance in two coexisting species of grass. Nature 220: 1342–1343.Google Scholar
  26. Harper, J. L., 1982. After description. In: E. I. Newman (ed.), The Plant Community as a Working Mechanism, pp. 11–26. Blackwell Scientific Publications, Oxford.Google Scholar
  27. Hayward, M. J., 1970. Selection and survival in Lolium perenne. Heredity 25: 441–447.Google Scholar
  28. Horn, H. S., 1978. Optimal tactics of reproduction and life-history. In: J. R. Krebs & N. B. Davies (eds.), Behavioural Ecology: An Evolutionary Approach, pp. 411–429. Blackwell Scientific Publications, Oxford.Google Scholar
  29. Huiskes, A. H. L., 1977. The natural establishment of Ammophila arenaria from seed. Oikos 29: 133–136.Google Scholar
  30. Huiskes, A. H. L., Soelen, J. van & Markusse, M. M., 1985. Field studies on the variability of population of Aster tripolium L. in relation to salt-marsh zonation. In W. G. Beeftink, J. Rozema & A. H. L. Huiskes (eds.), Ecology of Coastal Vegetation. Vegetation 61/62: 163–170.Google Scholar
  31. Hume, L. & Cavers, P. B., 1982. Geographic variation in a widespread perennial weed, Rumex crispus. The relative amounts of genetic and environmentally induced variation among populations. Can. J. Bot. 60: 1928–1937.Google Scholar
  32. Humphreys, M. O., 1982. The genetic basis of tolerance to salt spray in populations of Festuca rubra L. New Phytol. 91: 287–296.Google Scholar
  33. Hutchinson, G. E., 1957. Concluding remarks. Cold Spring Harb. Symp. on Quantitative Biol. 22: 415–27.Google Scholar
  34. Jain, S. K., 1979. Adaptive strategies: polymorphism, plasticity and homeostasis. In: O. T. Solbrig, S. K. Jain, G. B. Johnson & P. H. Raven (eds.), Topics in Plant Population Biology, pp. 160–187. Columbia University Press.Google Scholar
  35. Jefferies, R. L., 1972. Aspects of salt-marsh ecology with particular reference to inorganic plant nutrition. In: R. S. K. Barnes & J. Green (eds.), The Estuarine Environment, pp. 41–85. Applied Science Publishers, London.Google Scholar
  36. Jefferies, R. L., 1977. Growth responses of coastal halophytes to inorganic nitrogen. J. Ecol. 65: 847–865.Google Scholar
  37. Jefferies, R. L., Davy, A. J. & Rudmik, T., 1979. The growth strategies of coastal halophytes. In: R. L. Jefferies & A. J. Davy (eds.), Ecological Processes in Coastal Environments, pp. 243–268. Blackwell Scientific Publications, Oxford.Google Scholar
  38. Jefferies, R. L. & Perkins, N., 1977. The effects on the vegetation of the additions of inorganic nutrients to salt marsh soils at Stiffkey, Norfolk. J. Ecol. 65: 867–882.Google Scholar
  39. Laing, C. C., 1967. The ecology of Ammophila breviligulata. II. Genetic change as a factor in population decline on stable dunes. Am. Midl. 77: 495–500.Google Scholar
  40. Levins, R., 1968. Evolution in Changing Environments. Princeton University Press, Princeton, New Jersey.Google Scholar
  41. Lewontin, R. C., 1961. Evolution and the theory of games. J. Theoret. Biol. 1: 382–403.Google Scholar
  42. Marshall, J. K., 1965. Corynephorus canescens (L.) P. Beauv. as a model for the Ammophila problem. J. Ecol. 53: 447–463.Google Scholar
  43. Nicholls, M. K. & McNeilly, T., 1979. Sensitivity of rooting and tolerance to copper in Agrostis tenuis Sibth. New Phytol. 83: 653–664.Google Scholar
  44. Rabotnov, T. A., 1978. On coenopopulations of plant reproducing by seeds. In: A. H. J. Freysen & J. W. Woldendorp (eds.), Structure and Functioning of Plant Populations. North-Holland Publishing Company, Amsterdam.Google Scholar
  45. Ranwell, D. S., 1972. Ecology of Salt Marshes and Sand Dunes. Chapman & Hall, London.Google Scholar
  46. Rozema, J., 1979. Population dynamics and ecophysiological adaptations of some coastal members of the Juncaceae and Graminacae. In: R. L. Jefferies & A. J. Davy (eds.), Ecological Processes in Coastal Environments, pp. 229–242 Blackwell Scientific Publications, Oxford.Google Scholar
  47. Rozema, J., Rozema-Dijst, E., Freijsen, A. H. J. & Huber, J. J. L., 1978. Population differentiation within Festuca rubra with regard to soil salinity and soil water. Oecologia 34: 329–341.Google Scholar
  48. Scott, R. & Gray, A. J., 1976. Chromosome number of Puccinellia maritima (Huds.) Parl. in the British Isles. Watsonia 17: 53–57.Google Scholar
  49. Silander, J. A., 1979. Microevolution and clone structure in Spartina patens. Science 203: 658–660.Google Scholar
  50. Silander, J. A. & Antonovics, J., 1979. The genetic basis of the ecological amplitude of Spartina patens. I. Morphometric and physiological traits. Evolution 33: 1114–1127.Google Scholar
  51. Southwood, T. R. E., 1977. Habitat, the template for ecological strategies? J. Animal Ecol., 46: 337–365.Google Scholar
  52. Tiku, B. L. & Snaydon, R. W., 1977. Salinity tolerance within the grass species Agrostis stolonifera L. Plant Soil 35: 421–431.Google Scholar
  53. Tutin, T. G., Heywood, V. H., Burges, N. A., Valentine, D. H., Walters, S. M. & Webb, D. A., 1964–1980. Flora Europaea. 5 Vols. University Press, Cambridge.Google Scholar
  54. Venables, A. V. & Wilkins, D. A., 1978. Salt tolerance in pasture grasses. New Phytol. 80: 613–622.Google Scholar
  55. Waddington, C. H., 1961. Genetic assimilation. Adv. Genet. 10: 257–293.Google Scholar
  56. Waisel, Y., 1972. Biology of Halophytes. Academic Press, New York.Google Scholar
  57. Wallace, B., 1959. Studies of the relative fitness of experimental populations of Drosophila melanogaster. Am. Nat. 93: 295–314.Google Scholar
  58. Wallen, B., 1980. Changes in structure and function of Ammophila during primary succession. Oikos 34: 227–238.Google Scholar
  59. Wilson, E. O., 1965. The challenge from related species. In: H. G. Baker & G. L. Stebbins (eds.), The Genetics of Colonising Species, pp. 7–24. Academic Press, New York.Google Scholar
  60. Wu, L., 1981. The potential for evolution of salinity tolerance in Agrostis stolonifera L. and Agrostis tenuis Sibth. New Phytol. 89: 471–486.Google Scholar
  61. Wu, K. K. & Jain, S. K., 1978. Genetic and plastic responses in geographic differentiation of Bromus rubens populations. Can. J. Bot. 56: 873–879.Google Scholar
  62. Yates, F. & Cochran, W. G., 1938. The analysis of groups of experiments. J. Agric. Sci. Camb. 28: 556–580.Google Scholar

Copyright information

© Dr W. Junk Publishers 1985

Authors and Affiliations

  • A. J. Gray
    • 1
  1. 1.Furzebrook Research StationInstitute of Terrestrial EcologyWarehamU.K.

Personalised recommendations