Plant Molecular Biology

, Volume 26, Issue 1, pp 25–37 | Cite as

Thionins: properties, possible biological roles and mechanisms of action

  • D. E. A. Florack
  • W. J. Stiekema
Mini-reviews

Abstract

Thionins are low-molecular-weight proteins (Mr ca. 5000) occurring in seeds, stems, roots and leaves of a number of plant species. The different members of this family of plant proteins show both sequence and structural homology, and are toxic to bacteria, fungi, yeasts and various naked cells in vitro. Toxicity requires an electrostatic interaction of the positively charged thionin with the negatively charged phospholipids making up the membrane, followed by either pore formation or a specific interaction with a certain lipid domain. This domain might be composed of phosphoinositides, which mediate transduction of environmental signals in eukaryotes. Their in vitro toxicity to plant pathogenic bacteria and fungi could reflect a direct role in plant defence, although, in view of the many divergent activities displayed by thionins both in vitro and in vivo, a biological role other than inhibition of microbial growth is equally plausible.

Key words

Antimicrobial ion channel phosphoinositides plant defence thionins toxins 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andresen I, Becker W, Schlüter K, Burges J, Parthier B, Apel K: The identification of leaf thionin as one of the main jasmonate-induced proteins of barley (Hordeum vulgare). Plant Mol Biol 19: 193–204 (1992).Google Scholar
  2. 2.
    Angerhofer CK, Shier WT, Vernon LP: Phospholipase activation in the cytotoxic mechanism of thionin purified from nuts of Pyrularia pubera. Toxicon 28: 547–554 (1990).Google Scholar
  3. 3.
    Apel K, Bohlmann H, Reimann-Philipp U: Leaf thionins, a novel class of putative defense factors. Physiol Plant 80: 315–321 (1990).Google Scholar
  4. 4.
    Auguste P, Hugues M, Mourre C, Moinier D, Tartar A, Lazdunski M: Scyllatoxin, a blocker of Ca2+-activated K+ channels: structure-function relationships and brain localization of the binding sites. Biochemistry 31: 648–654 (1992).Google Scholar
  5. 5.
    Bairoch A: PROSITE: a dictionary of protein sites and patterns, 1st ed. University of Geneva, (1989).Google Scholar
  6. 6.
    Balls AK, Hale WS: A sulphur-bearing constituent of the petroleum ether extract of wheat flour (preliminary report). Cereal Chem 17: 243–245 (1940).Google Scholar
  7. 7.
    Balls AK, Hale WS, Harris TH: A crystalline protein obtained from a lipoprotein of wheat flour. Cereal Chem 19: 279–288 (1942).Google Scholar
  8. 8.
    Baute R, Richir C: Sur la sensibilité à la purothionine d'une souche d'Aspergillus flavus. C R Seances Soc Biol Ses Fil 160: 1567–1570 (1966).Google Scholar
  9. 9.
    Békés F: A study of purothionin isolated from the petroleum ether extract of wheat flour. Acta Aliment 6: 39–57 (1975).Google Scholar
  10. 10.
    Békés F, Lásztity R: Isolation and determination of amino acid sequence of avenothionin, a new purothionin analogue from oat. Cereal Chem 58: 360–361 (1981).Google Scholar
  11. 11.
    Békés F, Smied I: Assay into the protein-lipid complexes of wheat flour soluble in petroleum ether. Acta Aliment 10: 229–253 (1981).Google Scholar
  12. 12.
    Békés F, Smied I, Lásztity R: Investigation of thionins of wheat, barley, rye and oat. Devel Food Sci 5: 163–168 (1982).Google Scholar
  13. 13.
    Békés F: Study of purothionin analogues of certain cereals. Acta Aliment 10: 343–356 (1981).Google Scholar
  14. 14.
    Bohlmann H, Apel K: Isolation and characterization of cDNAs coding for leaf-specific thionins closely related to the endosperm-specific hordothionin of barley (Hordeum vulgare L.). Mol Gen Genet 207: 446–454 (1987).Google Scholar
  15. 15.
    Bohlmann H, Apel K: Thionins. Annu Rev Plant Physiol Plant Mol Biol 42: 227–240 (1991).Google Scholar
  16. 16.
    Bohlmann H, Clausen S, Behnke S, Giese H, Hiller C, Reimann-Philipp U, Schrader G, Barkholt V, Apel K: Leaf-specific thionins of barley—a novel class of cell wall proteins toxic to plant-pathogenic fungi and possibly involved in the defence mechanism of plants. EMBO J 7: 1559–1565 (1988).Google Scholar
  17. 17.
    Bohlmann H: The role of thionins in plant protection. Crit Rev Pl Sci 13: 1–16 (1994).Google Scholar
  18. 18.
    Brümmer J, Thole H, Kloppstech K: Hordothionins inhibit protein synthesis at the level of initiation in the wheat-germ system. Eur J Biochem 219: 425–433 (1994).Google Scholar
  19. 19.
    Cammue BPA, De Bolle MFC, Terras FRG, Proost P, Van Damme J, Rees SB, Vanderleyden J, Broekaert WF: Isolation and characterization of a novel class of plant antimicrobial peptides from Mirabilis jalapa L. seeds. J Biol Chem 267: 2228–2233 (1992).Google Scholar
  20. 20.
    Carbonero P, García-Olmedo F, Hernández-Lucas C: External association of hordothionins with protein bodies in mature barley. J Agric Food Chem 28: 399–402 (1980).Google Scholar
  21. 21.
    Carmona MJ, Hernández-Lucas C, San Martin C, González P, García-Olmedo F: Subcellular localization of type 1 thionins in the endosperms of wheat and barley. Protoplasma 173: 1–7 (1993).Google Scholar
  22. 22.
    Carmona MJ, Molina A, Fernández JA, López-Fando JJ, García-Olmedo F: Expression of the α-thionin gene from barley in tobacco confers enhanced resistance to bacterial pathogens. Plant J 3: 457–462 (1993).Google Scholar
  23. 23.
    Carrasco L, Vásquez D, Hernández-Lucas C, Carbonero P, García-Olmedo F: Thionins, plant peptides that modify membrane permeability in cultured mammalian cells. Eur J Biochem 116: 185–189 (1981).Google Scholar
  24. 24.
    Castagnaro A, Maraña C, Carbonero P, García-Olmedo F: Extreme divergence of a novel wheat thionin generated by a mutational burst specifically affecting the mature protein domain of the precursor. J Mol Biol 224: 1003–1009 (1992).Google Scholar
  25. 25.
    Clore GM, Nilges M, Sukumaran DK, Brünger AT, Karplus M, Gronenborn AM: The three-dimensional structure of α1-purothionin in solution: combined use of nuclear magnetic resonance, distance geometry and restrained molecular dynamics. EMBO J 5: 2729–2735 (1986).Google Scholar
  26. 26.
    Clore GM, Sukumaran DK, Gronenborn AM, Teeter MM, Whitlow M, Jones BL: Nuclear magnetic resonance study of the solution structure of α1-purothionin. Sequential resonance assignment, secondary structure and low resolution tertiary structure. J Mol Biol 193: 571–578 (1987).Google Scholar
  27. 27.
    Colilla FJ, Rocher A, Mendez E: τ-purothionins: amino acid sequence of two polypeptides of a new family of thionins from wheat endosperm. FEBS Lett 270: 191–194 (1990).Google Scholar
  28. 28.
    Coté GG, Crain RC: Why do plants have phosphoinositides? BioEssays 16: 39–46 (1994).Google Scholar
  29. 29.
    Coulson EJ, Harris TH, Axelrod B: Effect on small laboratory animals of the injection of the crystalline hydrochloride of a sulfur protein from wheat flour. Cereal Chem 19: 301–307 (1941).Google Scholar
  30. 30.
    De Weille JR, Schweitz H, Maes P, Tartar A, Lazdunski M: Calciseptine, a peptide isolated from black mamba venom, is a specific blocker of the L-type calcium channel. Proc Natl Acad Sci USA 88: 2437–2440 (1990).Google Scholar
  31. 31.
    Ebrahim-Nesbat F, Behnke S, Kleinhofs A, Apel K: Cultivar-related differences in the distribution of cellwall-bound thionins in compatible and incompatible interactions between barley and powdery mildew. Planta 179: 203–210 (1989).Google Scholar
  32. 32.
    Evans J, Wang Y, Shaw K-P, Vernon LP: Cellular responses to Pyrularia thionin are mediated by Ca2+ influx and phospholipase A2 activation and are inhibited by thionin tyrosine iodination. Proc Natl Acad Sci USA 86: 5849–5853 (1989).Google Scholar
  33. 33.
    Evett GE, Donaldson DM, Vernon LP: Biological properties of Pyrularia thionin prepared from nuts of Pyrularia pubera. Toxicon 24: 622–525 (1986).Google Scholar
  34. 34.
    Fernandez de Caleya R, Gonzalez-Pascual B, García-Olmedo F, Carbonero P: Susceptibility of phytopathogenic bacteria to wheat purothionins in vitro. Appl Microbiol 23: 998–1000 (1972).Google Scholar
  35. 35.
    Fernandez de Caleya R, Hernandez-Lucas C, Carbonero P, García-Olmedo F: Gene expression in alloploids: genetic control of lipopurothionins in wheat. Genetics 83: 687–699 (1976).Google Scholar
  36. 36.
    Fernández JA, Moreno M, Carmona MJ, Castagnaro A, García-Olmedo F: The barley α-thionin promoter is rich in negative regulatory motifs and directs tissue-specific expression of a reporter gene in tobacco. Biochim Biophys Acta 1172: 346–348 (1993).Google Scholar
  37. 37.
    Fisher R, Behnke S, Apel K: The effect of chemical stress on the polypeptide composition of the intercellular fluid of barley leaves. Planta 178: 61–68 (1989).Google Scholar
  38. 38.
    Florack DEA, Dirkse WG, Visser B, Heidekamp F, Stiekema WJ: Expression of biologically active hordothionins in tobacco. Effects of pre- and pro-sequences at the amino and carboxyl termini of the hordothionin pre-cursor on mature protein expression and sorting. Plant Mol Biol 24: 83–96 (1994).Google Scholar
  39. 39.
    Florack DEA, Visser B, De Vries PhM, Van Vuurde JWL, Stiekema WJ: Analysis of the toxicity of purothionins and hordothionins for plant pathogenic bacteria. Neth J Plant Path 99: 259–268 (1993).Google Scholar
  40. 40.
    Fontecilla-Camps JC, Almassy RJ, Ealick SE, Watt DD, Feldmann RJ, Bugg CE: Architecture of scorpion neurotoxins: a class of membrane-binding proteins. Trends Biochem Sci 6: 291–296 (1981).Google Scholar
  41. 41.
    García-Olmedo F, Carbonero P, Hernández-Lucas C, Paz-Ares J, Ponz F, Vicente O, Sierra JM: Inhibition of eukaryotic cell-free protein synthesis by thionins from wheat endosperm. Biochim Biophys Acta 740: 52–56 (1983).Google Scholar
  42. 42.
    García-Olmedo F, Carmona MJ, Lopez-Fando JJ, Fernandez JA, Castagnaro A, Molina A, Hernández-Lucas C, Carbonero P: Characterization and analysis of thionin genes. In: Boller T, Meins F (eds) Genes Involved in Plant Defense, pp. 283–302. Springer-Verlag, Wien (1992).Google Scholar
  43. 43.
    García-Olmedo F, Rodriguez-Palenzuela P, Hernández-Lucas C, Ponz F, Maraña C, Carmona MJ, Lopez-Fando J, Fernandez JA, Carbonero P: The thionins: a protein family that includes purothionins, viscotoxins and crambins. Oxford Surv Plant Mol Cell Biol 6: 31–60 (1989).Google Scholar
  44. 44.
    Gausing K: Thionin genes specifically expressed in barley leaves. Planta 171: 241–246 (1987).Google Scholar
  45. 45.
    Gu Q, Kawata EE, Morse M-J, Wu H-M, Cheung AY: A flower-specific cDNA encoding a novel thionin in tobacco. Mol Gen Genet 234: 89–96 (1992).Google Scholar
  46. 46.
    Hase T, Matsubara H, Yoshizumi H: Disulfide bonds of purothionin, a lethal toxin for yeasts. J Biochem 83: 1671–1678 (1978).Google Scholar
  47. 47.
    Hendrickson WA, Teeter MM: Structure of the hydrophobic protein crambin determined directly from the anomalous scattering of sulphur. Nature 290: 107–112 (1981).Google Scholar
  48. 48.
    Hernández-Lucas C, Fernandez de Caleya R, Carbonero P: Inhibition of brewer's yeasts by wheat purothionins. Appl Microbiol 28: 165–168 (1974).Google Scholar
  49. 49.
    Hernández-Lucas C, Royo J, Paz-Ares J, Ponz F, García-Olmedo F, Carbonero P: Polyadenylation site heterogeneity in mRNA encoding the precursor of the barley toxin α-hordothionin. FEBS Lett 200: 103–105 (1986).Google Scholar
  50. 50.
    Johnson TC, Wada K, Buchanan BB, Holmgren A: Reduction of purothionin by the wheat seed thioredoxin system. Plant Physiol 85: 446–451 (1987).Google Scholar
  51. 51.
    Jones BL, Lookhart GL, Johnson DE: Improved separation and toxicity analysis methods for purothionins. Cereal Chem 62: 327–331 (1985).Google Scholar
  52. 52.
    Jones BL, Mak AS: Amino acid sequences of the two α-purothionins of hexaploid wheat. Cereal Chem 54: 511–523 (1976).Google Scholar
  53. 53.
    Jones BL, Meredith P: Inactivation of alpha-amylase activity by purothionins. Cereal Chem 59: 321 (1982).Google Scholar
  54. 54.
    Judd AM, Vernon LP, MacLeod RM: Pyrularia thionin increases arachidonate liberation and prolactin and growth hormone release from anterior pituitary cells. Toxicon 30: 1563–1573 (1992).Google Scholar
  55. 55.
    Kashimoto T, Sakakibara R, Huynh QK, Wada H, Yoshizumi H: The effect of purothionin on bovine adrenal medullary cells. Res Comm Chem Path Pharmacol 26: 221–224 (1979).Google Scholar
  56. 56.
    Konopa J, Woynarowski JM, Lewandowska-Gumieniak M: Isolation of viscotoxins. Cytotoxic basic polypeptides from Viscum album L. Hoppe-Seyler's Z Physiol Chem 361: 1525–1533 (1980).Google Scholar
  57. 57.
    Kramer KJ, Klassen LW, Jones BL, Speirs RD, Kammer AE: Toxicity of purothionin and its homologues to the tobacco hornworm, Manduca sexta (L.) (Lepidoptera: Sphingidae). Toxicol Appl Pharmacol 48: 179–183 (1979).Google Scholar
  58. 58.
    Lecomte JTJ, Jones BL, Llinás M: Proton magnetic resonance studies of barley and wheat thionins: structural homology with crambin. Biochemistry 21: 4843–4849 (1982).Google Scholar
  59. 59.
    Lecomte JTJ, Kaplan D, Llinás M, Thunberg E, Samuelsson G: Proton magnetic resonance characterization of phoratoxins and homologous proteins related to Crambin. Biochemistry 26: 1187–1194 (1987).Google Scholar
  60. 60.
    Mak AS, Jones BL: The amino acid sequence of wheat β-purothionin. Can J Biochem 22: 835–842 (1976).Google Scholar
  61. 61.
    Mellstrand ST, Samuelsson G: Phoratoxin, a toxic protein from the mistletoe Phoradendron tomentosum subsp. Macrophyllum (Loranthaceae). Improvements in the isolation procedure and further studies on the properties. Eur J Biochem 32: 143–147 (1973).Google Scholar
  62. 62.
    Mellstrand ST, Samuelsson G: Phoratoxin, a toxic protein from the mistletoe Phoradendron tomentosum subsp. macrophyllum (Loranthaceae). The amino acid sequence. Acta Pharm Suec 11: 347–360 (1974).Google Scholar
  63. 63.
    mellstrand ST, Samuelsson G: Phoratoxin, a toxic protein from the mistletoe Phoradendron tomentosum subsp. macrophyllum (Loranthaceae). The disulphide bonds. Acta Pharm Suec 11: 367–374 (1974).Google Scholar
  64. 64.
    Mendez E, Moreno A, Colilla F, Pelaez F, Limas GG, Mendez R, Soriano F, Salinas M, De Haro C: Primary structure and inhibition of protein synthesis in eukaryotic cell-free system of a novel thionin, τ-hordothionin, from barley endosperm. Eur J Biochem 194: 533–539 (1990).Google Scholar
  65. 65.
    Molina A, Ahl Goy P, Fraile A, Sánchez-Monge R, García-Olmedo F: Inhibition of bacterial and fungal plant pathogens by thionins of types I and II. Plant Sci 92: 169–177 (1993).Google Scholar
  66. 66.
    Nakanishi T, Yoshizumi H, Tahara S, Hakura A, Toyoshima K: Cytotoxicity of purothionin-A on various animal cells. Gann 70: 323–326 (1979).Google Scholar
  67. 67.
    Ohtani S, Okada T, Kagamiyama H, Yoshizumi H: The amino acid sequence of purothionin A, a lethal toxic protein for brewer's yeasts from wheat. Agric Biol Chem 39: 2269–2270 (1975).Google Scholar
  68. 68.
    Ohtani S, Okada T, Yoshizumi H, Kagamiyama H: Complete primary structures of two subunits of purothionin A, a lethal protein for brewer's yeast from wheat flour. J Biochem 82: 753–767 (1977).Google Scholar
  69. 69.
    Okada T, Yoshizumi H: The mode of action of toxic protein in wheat and barley on brewing yeast. Agric Biol Chem 37: 2289–2294 (1973).Google Scholar
  70. 70.
    Olivera BM, Gray WR, Zeikus R, McIntosh JM, Varga J, Rivier J, De Santos V, Cruz LJ: Peptide neurotoxins from fish-hunting cone snails. Science 230: 1338–1343 (1985).Google Scholar
  71. 71.
    Olson T, Samuelsson G: The amino acid sequence of Viscotoxin A2 from the European mistletoe (Viscum album L., Loranthaceae). Acta Chem Scand 26: 585–595 (1972).Google Scholar
  72. 72.
    Osorio e Castro VR, Ashwood ER, Wood SG, Vernon LP: Hemolysis of erythrocytes and fluorescence polarization changes elicited by peptide toxins, aliphatic alcohols, related glycols and benzylidene derivatives. Biochim Biophys Acta 1029: 252–258 (1990).Google Scholar
  73. 73.
    Osorio e Castro VR, Van Kuiken BA, Vernon LP: Action of a thionin isolated from nuts of Pyrularia pubera on human erythrocytes. Toxicon 27: 501–510 (1989).Google Scholar
  74. 74.
    Osorio e Castro VR, Vernon LP: Hemolytic activity of thionin from Pyrularia pubera nuts and snake venom toxins of Naja naja species: Pyrularia thionin and snake venom cardiotoxin compete for the same membrane site. Toxicon 27: 511–517 (1989).Google Scholar
  75. 75.
    Ponz F, Paz-Ares J, Hernández-Lucas C, Carbonero P, García-Olmedo F: Synthesis and processing of thionin precursors in developing endosperm from barley (Hordeum vulgare L.). EMBO J 2: 1035–1040 (1983).Google Scholar
  76. 76.
    Ponz F, Paz-Ares J, Hernández-Lucas C, García-Olmedo F, Carbonero P: Cloning and nucleotide sequence of a cDNA encoding the precursor of the barley toxin α-hordothionin. Eur J Biochem 156: 131–135 (1986).Google Scholar
  77. 77.
    Rasmussen SK, Rasmussen CE: Full length cDNA encoding barley toxin β-hordothionin. Plant Mol Biol 21: 579 (1993).Google Scholar
  78. 78.
    Redman DG, Fisher N: Purothionin analogues from barley flour. J Sci Food Agric 20: 427–432 (1968).Google Scholar
  79. 79.
    Reinmann-Philipp U, Behnke S, Batschauer A, Schäfer E, Apel K: The effect of light on the biosynthesis of leaf-specific thionins in barley, Hordeum vulgare. Eur J Biochem 182: 283–289 (1989).Google Scholar
  80. 80.
    Reimann-Philipp U, Schrader G, Martinoia E, Barkholt V, Apel K: Intracellular thionins of barley. A second group of leaf thionins closely related to but distinct from cell wall-bound thionins. J Biol Chem 264: 8978–8984 (1989).Google Scholar
  81. 81.
    Rodriguez-Palenzuela P, Pintor-Toro JA, Carbonero P, García-Olmedo F: Nucleotide sequence and endosperm-specific expression of the structural gene for the toxin α-hordothionin in barley (Hordeum vulgare L.). Gene 70: 271–281 (1988).Google Scholar
  82. 82.
    Rosell S, Samuelsson G: Effect of mistletoe viscotoxin and phoratoxin on blood circulation. Toxicon 4: 107–110 (1966).Google Scholar
  83. 83.
    Samuelsson G: Mistletoe toxins. Syst Zool 22: 566–569 (1973).Google Scholar
  84. 84.
    Samuelsson G, Pettersson BM: The amino acid sequence of Viscotoxin B from the European mistletoe (Viscum album L., Loranthaceae). Eur J Biochem 21: 86–89 (1971).Google Scholar
  85. 85.
    Samuelsson G, Pettersson B: Toxic proteins from the mistletoe Dendrophtora clavata. II. The amino acid sequence of denclatoxin B. Acta Pharm Suec 14: 245–254 (1977).Google Scholar
  86. 86.
    Schrader-Fisher G, Apel K: cDNA-derived identification of novel thionin precursors in Viscum album that contain highly divergent thionin domains but conserved signal and acidic polypeptide domains. Plant Mol Biol 23: 1233–1242 (1993).Google Scholar
  87. 87.
    Schrader G, Apel K: Isolation and characterization of cDNA's encoding viscotoxins of mistletoe (Viscum album). Eur J Biochem 198: 549–553 (1991).Google Scholar
  88. 88.
    Stuart LS, Harris TH: Bactericidal and fungicidal properties of a crystalline protein isolated from unbleached wheat flour. Cereal Chem 19: 288–300 (1942).Google Scholar
  89. 89.
    Teeter MM, Ma X-Q, Rao U, Whitlow M: Crystal structure of a protein-toxin α1-purothionin at 2.5 Å and a comparison with predicted models. Proteins Structure Function Genet 8: 118–132 (1990).Google Scholar
  90. 90.
    Teeter MM, Mazer JA, L'Italien JJ: Primary structure of the hydrophobic plant protein crambin. Biochemistry 20: 5437–5443 (1981).Google Scholar
  91. 91.
    Teeter MM, Whitlow M: Test of circular dichroism (CD) methods for crambin and CD-assisted secondary structure prediction of its homologous toxins. Proteins 4: 262–273 (1988).Google Scholar
  92. 92.
    Terras FRG, Schoofs HME, Thevissen K, Osborn RW, Vanderleyden J, Cammue BPA, Broekaert WF: Synergistic enhancement of the antifungal activity of wheat and barley thionins by radish and oilseed rape 2S albumins and by barley trypsin inhibitors. Plant Physiol 103: 1311–1319 (1993).Google Scholar
  93. 93.
    Thunberg E, Samuelsson G: The amino acid sequence of ligatoxin A, from the mistletoe Phoradendron liga. Acta Pharm Suec 19: 447–456 (1982).Google Scholar
  94. 94.
    Titarenko E, Hargreaves J, Keon J, Gurr SJ: Defense-related gene expression in barley coleoptile cells following infection by Septoria nodorum. In: Fritig B, Legrand M (eds) Mechanisms of Plant Defense Responses, pp. 308–311. Kluwer Academic Publishers, Dordrecht (1993).Google Scholar
  95. 95.
    Van Etten CH, Nielsen HC, Peters JE: A crystalline polypeptide from the seed of Crambe abyssinica. Phytochemistry 4: 467–473 (1965).Google Scholar
  96. 96.
    Vermeulen JAWH, Lamerichs RMJN, Berliner LJ, De Marco A, Llinás M, Boelens R, Alleman J, Kaptein R: 1H NMR characterization of two crambin species. FEBS Lett 219: 426–430 (1987).Google Scholar
  97. 97.
    Vernon LP, Evett GE, Zeikus RD, Gray WR: A toxic thionin from Pyrularia pubera: purification, properties, and amino acid sequence. Arch Biochem Biophys 238: 18–29 (1985).Google Scholar
  98. 98.
    Vernon LP, Rogers A: Binding properties of Pyrularia thionin and Naja naja kaouthia cardiotoxin to human and animal erythrocytes and to murine P388 cells. Toxicon 30: 711–721 (1992).Google Scholar
  99. 99.
    Vernon LP, Rogers A: Effect of calcium and phosphate ions on hemolysis induced by Pyrularia thionin and Naja naja kaouthia cardiotoxin. Toxicon 30: 701–709 (1992).Google Scholar
  100. 100.
    Wada K, Buchanan BB: Purothionins: a seed protein with thioredoxin activity. FEBS Lett 124: 237–240 (1981).Google Scholar
  101. 101.
    Wada K, Ozaki Y, Matsubara H, Yoshizumi H: Studies on purothionin by chemical modifications. J Biochem 91: 257–263 (1982).Google Scholar
  102. 102.
    Wallace BA, Kohl N, Teeter MM: Crambin in phospholipid vesicles: circular dichroism analysis of crystal structure relevance. Proc Natl Acad Sci USA 81: 1406–1410 (1984).Google Scholar
  103. 103.
    Whitlow M, Teeter MM: Energy minimization for tertiary structure prediction of homologous proteins: α1-purothionin and Viscotoxin A3 models from Crambin. J Biomol Struct Dynam 2: 831–848 (1985).Google Scholar
  104. 104.
    Winterfeld VK, Bijl LH: Viscotoxin, ein neuer Inhaltsstoff der Mistel (Viscum album L.). Liebigs Ann Chem 561: 107–115 (1949).Google Scholar
  105. 105.
    Woodward SR, Cruz LJ, Olivera BM, Hillyard DR: Constant and hypervariable regions in conotoxin propeptides. EMBO J 9: 1015–1020 (1990).Google Scholar
  106. 106.
    Wooley DW, Krampitz LO: Reversal by phosphatides of the antimicrobial action of a crystalline protein from wheat. J Biol Chem 146: 273–274 (1942).Google Scholar
  107. 107.
    Woynarowski JM, Konopa J: Interaction between DNA and viscotoxins. Hoppe-Seyler's Z Physiol Chem 361: 1535–1545 (1980).Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • D. E. A. Florack
    • 1
  • W. J. Stiekema
    • 1
  1. 1.Department of Molecular BiologyDLO Centre for Plant Breeding and Reproduction Research (CPRO-DLO)WageningenNetherlands

Personalised recommendations