Plant Molecular Biology

, Volume 32, Issue 1–2, pp 191–222

Molecular chaperones and protein folding in plants

  • Rebecca S. Boston
  • Paul V. Viitanen
  • Elizabeth Vierling
Fate of Translation Product
  • 672 Downloads

Abstract

Protein folding in vivo is mediated by an array of proteins that act either as ‘foldases’ or ‘molecular chaperones’. Foldases include protein disulfide isomerase and peptidyl prolyl isomerase, which catalyze the rearrangement of disulfide bonds or isomerization of peptide bonds around Pro residues, respectively. Molecular chaperones are a diverse group of proteins, but they share the property that they bind substrate proteins that are in unstable, non-native structural states. The best understood chaperone systems are HSP70/DnaK and HSP60/GroE, but considerable data support a chaperone role for other proteins, including HSP100, HSP90, small HSPs and calnexin. Recent research indicates that many, if not all, cellular proteins interact with chaperones and/or foldases during their lifetime in the cell. Different chaperone and foldase systems are required for synthesis, targeting, maturation and degradation of proteins in all cellular compartments. Thus, these diverse proteins affect an exceptionally broad array of cellular processes required for both normal cell function and survival of stress conditions. This review summarizes our current understanding of how these proteins function in plants, with a major focus on those systems where the most detailed mechanistic data are available, or where features of the chaperone/foldase system or substrate proteins are unique to plants.

Key words

heat shock proteins foldases BiP protein transport protein disulfide isomerase calnexin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ajir-Shapira D, Leustek T, Dalie B, Weissbach H, Brot N: Hsp70 proteins, similar to Escherichia coli DnaK, in chloroplasts and mitochondria of Euglena gracilis. Proc Natl Acad Sci 87: 1749–1752 (1990).Google Scholar
  2. 2.
    Aligue R, Akhavan-Niak H, Russell P: A role for Hsp90 in cell cycle control: weel tyrosine kinase activity requires interaction with Hsp90. EMBO J 13: 6099–6106 (1994).Google Scholar
  3. 3.
    Allen GJ, Sanders D: Calcineurin, a type 2B protein phosphatase, modulates the Ca2+-permeable slow vacuolar ion channel of stomatal guard cells. Plant Cell 7: 1473–1483 (1995).Google Scholar
  4. 4.
    Allen NS, Tiwari SC: Localization of calreticulin, a major calcium binding protein, in plant cells. Plant Physiol 96 (suppl): 42 (1991).Google Scholar
  5. 5.
    Anderson JV, Haskell DW, Guy CL: Differential influence of ATP on native spinach 70-kilodalton heat-shock cognates. Plant Physiol 104: 1371–1380 (1994).Google Scholar
  6. 6.
    Anderson JV, Li Q, Haskell DW, Guy CL: Structural organization of the spinach endoplasmic reticulum-luminal 70-kDa heat shock cognate gene and expression of 70-kDa heat-shock genes during cold acclimation. Plant Physiol 104: 1359–1370 (1994)/Google Scholar
  7. 7.
    Arrigo A-P, Landry J: Experssion and function of the lowmolecular weight heat shock proteins. In: Morimoto R, Tissieres A, Georgopolous C (eds), The Biology of Heat Shock Proteins and Molecular Chaperones, pp. 335–373. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY 1994.Google Scholar
  8. 8.
    Azem A, Kessel M, Goloubinoff P: Characterization of a functional GroEL14(GroES7)2 chaperonin hetero-oligomer. Science 265: 653–656 (1994).Google Scholar
  9. 9.
    Baneyx F, Bertsch U, Kalbach CE, Van der Vies SM, Soll J, Gatenby AA: Spinach chloroplast cpn21 co-chaperonin possesses two functional domains fused together in a toroidal structure and exhibits nucleotide-dependent binding to plastid chaperonin 60. J Biol Chem 270: 10695–10702 (1995).Google Scholar
  10. 10.
    Barraclough R, Ellis RJ: Protein synthesis in chloroplasts. IX. Assembly of newly-synthesized large subunits into ribulose bisphosphate carboxylase in isolated intact pea chloroplasts. Biochim Biophys Acta 608: 19–31 (1980).Google Scholar
  11. 11.
    Bates EEM, Vergne P, Dumas C: Analysis of the cytosolic hsp70 gene family in Zea mays. Plant Mol Biol 25: 909–916 (1994).Google Scholar
  12. 12.
    Bednarek SY, Raikhel NV: Intracellular trafficking of secretory proteins. Plant Mol Biol 20: 133–150 (1992).Google Scholar
  13. 13.
    Bertsch U, Soll J: Functional analysis of isolated cpn10 domains and conserved amino acid residues in spinach chloroplast co-chaperonin by site-directed mutagenesis. Plant Mol Biol 29: 1039–1055 (1995).Google Scholar
  14. 14.
    Bertsch U, Soll J, Seetharam R, Viitanen PV: Identification, characterization, and DNA sequence of a functional ‘double’ groES-like chaeronin from chloroplasts of higher plants. Proc Natl Acad Sci USA 89: 8696–8700 (1992).Google Scholar
  15. 15.
    Bessoule J-J: Occurrence and sequence of a DnaJ protein in plant (Allium porrum) epidermal cells. FEBS Lett 323: 51–54 (1993).Google Scholar
  16. 16.
    Blond-Elguindi S, Cwirla SE, Dower WJ, Lipshutz RJ, Sprang SR, Sambrook JF, Gething M-JH: Affinity panning of a library of peptides displayed on bacteriophages reveals the binding specificity of BiP. Cell 75: 717–728 (1993).Google Scholar
  17. 17.
    Blond-Elguindi S, Fourie AM, Sambrook JF, Gething MJH: Peptide-dependent stimulation of the ATPase activity of the molecular chaperone BiP is the result of conversion of oligomers to active monomers. J Biol Chem 268: 12730–12735 (1993).Google Scholar
  18. 18.
    Bloom MV, Milos P, Roy H: Light-dependent assembly of ribulose-1,5-bisphosphate carboxylase. Proc Natl Acad Sci USA 80: 1013–1017 (1983).Google Scholar
  19. 19.
    Bohen SP, Kralli A, Yamamoto KR: Hold 'em and fold 'em: chaperones and signal transduction. Science 268: 1303–1304 (1995).Google Scholar
  20. 20.
    Boorstein WR, Ziegelhoffer T, Craig EA: Molecular evolution of the HSP70 multigene family. J Mol Evol 38: 1–17 (1994).Google Scholar
  21. 21.
    Bork P, Sander C, and Valencia A: An ATPase domain common to prokaryotic cell cycle proteins, sugar kinases, actin, and hsp70 heat shock proteins. Proc Natl Acad Sci USA 89: 7290–7294 (1992).Google Scholar
  22. 22.
    Boston RS, Fontes EBP, Shank BB, Wrobel RL: Increased expression of the maize immunoglobulin binding protein homologue b-70 in three zein regulatory mutants. Plant Cell 3: 497–505 (1991).Google Scholar
  23. 23.
    Boston RS, Gillikin JW, Wrobel RL: Coordinate induction of three luminal ER-stress proteins in maize endosperm mutants. J Cell Biochem 19A: 143 (1995).Google Scholar
  24. 24.
    Braig K, Otwinowski Z, Hegde R, Boisvert DC, Joachimiak A, Horwich AL, Sigler PB: The crystal structure of the bacterial chaperonin GroEL at 2.8 å. Nature 371: 578–586 (1994).Google Scholar
  25. 25.
    Brot N, Redfield B, Qiu N-H, Chen G-J, Vidal V, Carlino A, Weissbach H: Similarity of nucleotide interactions of BiP and GTP-binding proteins. Proc Natl Acad Sci USA 91: 12120–12124 (1994).Google Scholar
  26. 26.
    Buchner J, Schmidt M, Fuchs M, Jaenicke R, Rudolph R, Schmid FX, Kiebhaber T: GroE facilitates refolding of citrate synthase by suppressing aggregation. Biochemistry 30: 1586–1591 (1991).Google Scholar
  27. 27.
    Bulleid N, Freedman R: Defective co-translational formation of disulfide bonds in protein disulphide isomerase-deficient microsomes. Nature 335: 649–651 (1988).Google Scholar
  28. 28.
    Burt WJE, Leaver CJ: Identification of a chaperonin-10 homologue in plant mitochondria. FEBS Lett 339: 139–141 (1994).Google Scholar
  29. 29.
    Cabané M, Calvet P, Vincens P, Boudet AM: Characterization of chilling-acclimation-related proteins in soybean and identification of one as a member of the heat shock protein (HSP 70) family. Planta 190: 346–353 (1993).Google Scholar
  30. 30.
    Cannon S, Wang P, Roy H: Inhibition of ribulose bisphosphate carboxylase by antibody to a binding protein. J Cell Biol 103: 1327–1335 (1986).Google Scholar
  31. 31.
    Carazo JM, Marco S, Abella G, Carrascosa JL, Secilla J-P, Muyal M: Electron microscopy study of GroEL chaperonin: different views of the aggregate appear as a function of cell growth temperature. J Struct Biol 106: 211–220 (1991).Google Scholar
  32. 32.
    Ceriotti A, Pedrazzini E, Bielli A, Giovinazzo G, Bollini R, Vitale A: Assembly and intracellular transport of phaseolin, the major storage protein of Phaseolus vulgaris. J Plant Physiol 145: 648–653 (1995).Google Scholar
  33. 33.
    Chandrasekhar GN, Tilly K, Woolford C, Hendrix R, Georgopoulos C: Purification and properties of the groES morphogenetic protein of Escherichia coli. J Biol Chem 261: 12414–12419 (1986).Google Scholar
  34. 34.
    Chang H-CJ, Lindquist S: Conservation of Hsp90 macromolecular complexes in Saccharomyces cerevisiae. J Biol Chem 269: 24983–24988 (1994).Google Scholar
  35. 35.
    Chen F, Hayes PM, Mulrooney DM, Pan A: Identification and characterization of cDNA clones encoding plant calreticulin in barley. Plant Cell 6: 835–843 (1994).Google Scholar
  36. 36.
    Chen GG, Jagendorf AT: Chloroplast molecular chaperone-assisted refolding and reconstitution of an active multisubunit coupling factor CF1 core. Proc Natl Acad Sci USA 91: 11497–11501 (1994).Google Scholar
  37. 37.
    Chen Q, Lauzon LM, DeRocher AE, Vierling E: Accumulation, stability, and localization of a major chloroplast heat-shock protein. J Cell Biol 110: 1873–1883 (1990).Google Scholar
  38. 38.
    Chen Q, Vierling E: Analysis of conserved domains identifies a unique structural feature of a chloroplast heat shock protein. Mol Gen Genet 226: 425–431 (1991).Google Scholar
  39. 39.
    Chen X, Sullivan DS, Huffaker TC: Two yeast genes with similarity to TCP-1 are required for microtubule and actin function in vivo. Proc Natl Acad Sci USA 91: 9111–9115 (1994).Google Scholar
  40. 40.
    Cheng MY, Hartl F-U, Martin J, Pollock RA, Kalousek F, Neupert W, Hallberg EM, Hallberg RL, Horwich AL: The mitochondrial chaperonin hsp60 is essential for assembly of protein imported into yeast mitochondria. Nature 337: 620–625 (1989).Google Scholar
  41. 41.
    Chernoff YO, Lindquist SL, Ono B, Inge-Vechtomov SG, Liebman SW: Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [psi +]. Science 268: 880–884 (1995).Google Scholar
  42. 42.
    Clarke AK, Critchley C: Characterisation of chloroplast heat shock proteins in young leaves of C4 monocotyledons. Physiol Plant 92: 118–130 (1994).Google Scholar
  43. 43.
    Cloney LP, Bekkaoui DR, Wood MG, Hemmingsen SM: Assessment of plant chaperonin-60 gene function in Escherichia coli. J Biol Chem 267: 23333–23336 (1992).Google Scholar
  44. 44.
    Cloney LP, Wu HB, Hemmingsen SM: Expression of plant chaperonin-60 genes in Escherichia coli. J Biol Chem 267: 23327–23332 (1992).Google Scholar
  45. 45.
    Coleman CE, Lopes MA, Gillikin JW, Boston RS, Larkins BA: A defective signal peptide in the maize high-lysine mutant floury 2. Proc Natl Acad Sci USA 92: 6828–6831 (1995).Google Scholar
  46. 46.
    Conner TW, LaFayette PR, Nagao RT, Key JL: Sequence and expression of a HSP83 from Arabidopsis thaliana. Plant Physiol 94: 1689–1695 (1990).Google Scholar
  47. 47.
    Cordewener JHG, Hause G, Görgen E, Busink R, Hause B, Dons HJM, van Lammeren AAM, van Lookeren Campagne MM, Pechan P: Changes in synthesis and localization of members of the 70-kDa class of heat-shock proteins accompany the induction of embryogenesis in Brassica napus L. microspores. Planta 196: 747–755 (1995).Google Scholar
  48. 48.
    Coughlan SJ, Hastings C, Winfrey JR: Molecular characterization of plant endoplasmic reticulum: identification of protein disulfide-isomerase as the major reticuloplasmin. Eur J Biochem 235: 215–244 (1996).Google Scholar
  49. 49.
    Craig EA: Regulation and function of the HSP70 multigene family of Saccharomyces cerevisiae. In: Morimoto RI, Tissières A, Georgopoulos C (eds), Stress Proteins in Biology and Medicine, pp. 301–321. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1990).Google Scholar
  50. 50.
    Craig EA, Baxter BK, Becker J, Halladay J, Ziegelhoffer T: Cytosolic hsp70s of Saccharomyces cerevisiae: roles in protein synthesis, protein translocation, proteolysis, and regulation. In Morimoto RI, Tissières A, Georgopoulos C (eds) The Biology of Heat Shock Proteins and Molecular Chaperones, pp. 31–52. Cold Spring Harbor Press, Cold Spring Harbor, NY (1994).Google Scholar
  51. 51.
    Craig EA, Gambill BD, Nelson RJ: Heat shock proteins: molecular chaperones of protein biogenesis. Microbiol Rev 57: 402–414 (1993).Google Scholar
  52. 52.
    Cunningham KW, Fink GR: Calcineurin-dependent growth control in Saccharomyces cerevisiae mutants lacking PMC1, a homolog of plasma membrane Ca2+ ATPases. J Cell Biol 124: 351–363 (1994).Google Scholar
  53. 53.
    Cutforth T, Rubin GM: Mutations in Hsp83 and cdc37 impair signaling by the sevenless receptor tyrosine kinase in Drosophila. Cell 77: 1027–1036 (1994).Google Scholar
  54. 54.
    Cyr DM, Langer T, Douglas MG: DnaJ-like proteins: molecular chaperones and specific regulators of Hsp70. Trends Biochem Sci 19: 176–181 (1994).Google Scholar
  55. 55.
    Czar MJ, Lyons RH, Welsh MJ, Renoir JM, Pratt WB: Evidence that the FK506-binding immunophilin heat shock protein 56 is required for trafficking of the glucocorticoid receptor from the cytoplasm to the nucleus. Mol Endocrinol 9: 1549–1560 (1995).Google Scholar
  56. 56.
    D'Amico L, Valsasina B, Daminati MG, Fabrini MS, Nitti G, Bollini R, Ceriotti A, Vitale A: Bean homologoues of the mammalian glucose regulated proteins: induction by tunicamycin and interaction with newly-synthesized storage proteins in the endoplasmic reticulum. Plant J 2: 443–455 (1992).Google Scholar
  57. 57.
    Delmer DP, Amor Y: Cellulose biosynthesis. Plant Cell 7: 987–1000 (1995).Google Scholar
  58. 58.
    Delmer DP, Volokita M, Solomon M, Fritz U, Delphendahl W, Herth W: A monoclonal antibody recognizes a 65 kDa higher plant membrane polypeptide which undergoes cation-dependent association with callose synthase in vitro and colocalizes with sites of high callose deposition in vivo. Protoplasma 176: 33–42 (1993).Google Scholar
  59. 59.
    Denecke J, Carlsson LE, Vidal S, Höglund A-S, Ek B, Van Zeijl MJ, Sinjorgo KMC, Palva ET: The tobacco homologue of mammalian calreticulin is present in protein complexes in vivo. Plant Cell 7: 391–406 (1995).Google Scholar
  60. 60.
    Denecke J, Ek B, Caspers M, Sinjorgo KMC, Palva ET: Analysis of sorting signals responsible for the accumulation of soluble reticuloplasmins in the plant endoplasmic reticulum. J Exp Bot (Suppl.) 44: 213–221 (1993).Google Scholar
  61. 61.
    Denecke J, Goldman MHS, Demolder J, Seurink J, Botterman J: The tobacco luminal binding protein is encoded by a multigene family. Plant Cell 1025–1035 (1991).Google Scholar
  62. 62.
    Denecke J, Vitale A: The use of protoplasts to study protein synthesis and transport by the plant endomembrane system. In: Galbraith D, Bourque D, Bohnert D (eds) Methods in Cell Biology Part B, pp. 335–348. Academic Press, New York (1995).Google Scholar
  63. 63.
    DeRocher A, Vierling E: Cytoplasmic HSP70 homologues of pea: differential expression in vegetative and embryonic organs. Plant Mol Biol 27: 441–456 (1995).Google Scholar
  64. 64.
    DeRocher AE, Helm KW, Lauzon LM, Vierling E: Expression of a conserved family of cytoplasmic low molecular weight heat shock proteins during heat stress and recovery. Plant Physiol 96: 1038–1047 (1991).Google Scholar
  65. 65.
    Dickson R, Howard R, Alldrick SP, Ellis RJ, Viitanen PV: Reconstitution of higher plant chloroplast chaperonin 60 tetradecamers active in protein folding. J Biol Chem, submitted (1996).Google Scholar
  66. 66.
    Dickson R, Larsen B, Viitanen PV, Tormey MB, Geske J, Strange R, Bemis LT: Cloning, expression, and purification of a functional nonacetylated mammalian mitochondrial chaperonin 10: J Biol Chem 269: 26858–26864 (1994).Google Scholar
  67. 67.
    Domoney C, Ellis N, Turner L, Casey R: A developmentally regulated early-embryogenesis protein in pea (Pisum sativum L.) is related to the heat-shock protein (HSP70) gene family. Planta 184: 350–355 (1991).Google Scholar
  68. 68.
    Duck N, McCormick S, Winter J: Heat shock protein hsp70 cognate gene expression in vegetative and reproductive organs of Lycopersicon esculentum. Proc Natl Acad Sci 86: 3674–3678 (1989).Google Scholar
  69. 69.
    Dure LIII: A repeating 11-mer amino acid motif and plant desiccation. Plant J 3: 363–369 (1993).Google Scholar
  70. 70.
    Dwek RA: Glycobiology: More functions for oligosaccharides. Science 269: 1234–1235 (1995).Google Scholar
  71. 71.
    Ehmann B, Krenz M, Mummert E, Schäfer E: Two Tcp-1-related but highly divergent gene families exist in oat encoding proteins of assumed chaperone function. FEBS Lett 336: 313–316 (1993).Google Scholar
  72. 72.
    Ellis J: Protein folding: cytosolic chaperonin confirmed. Nature 358: 191–192 (1992).Google Scholar
  73. 73.
    Ellis RJ: Molecular chaperones: the plant connection. Science 250: 954–959 (1990).Google Scholar
  74. 74.
    Ellis RJ: Chaperone function: cracking the second half of the genetic code. Plant J 1: 9–13 (1991).Google Scholar
  75. 75.
    Ellis RJ, van der Vies SM: The Rubisco subunit binding protein. Photosyn Res 16: 101–115 (1988).Google Scholar
  76. 76.
    Ellis RJ, van der Vies SM: Molecular chaperones. Annu Rev Biochem 60: 321–347 (1991).Google Scholar
  77. 77.
    Engel A, Hayer-Hartl MK, Goldie KN, Pfeifer G, Hegerl R, Müller S, Da Silva ACR, Baumeister W, Hartl FFU: Functional significance of symmetrical versus asymmetrical GroEL-GroES chaperonin complexes. Science 269: 832–836 (1995).Google Scholar
  78. 78.
    Fayet O, Ziegelhoffer T, Georgopoulos C: The groES and groEL heat shcok gene products of Escherichia coli are essential for bacterial growth at all temperatures. J Bact 171: 1379–1385 (1989).Google Scholar
  79. 79.
    Felsheim RF, Das A: Structure and expression of a heat-shock protein 83 gene of Pharbitis nil. Plant Physiol 100: 1764–1771 (1992).Google Scholar
  80. 80.
    Fischer HM, Babst M, Kaspar T, Acuña G, Arigoni F, Hennecke H: One member of a groESL-like chaperonin multi-gene family in Bradyrhizobium japonicum is co-regulated with symbiotic nitrogen fixation genes. EMBO J 12: 2901–2912 (1993).Google Scholar
  81. 81.
    Flaherty KM, DeLuca-Falherty C, McKay DB: Three-dimensional structure of the ATPase fragment of a 70K heat-shock cognate protein. Nature 346: 623–628 (1990).Google Scholar
  82. 82.
    Flaherty KM, McKay DB, Kabsch W, Holmes KC: Similarity of the three-dimensional structures of actin and the ATPase fragment of a 70- kDa heat shock cognate protein. Proc Natl Acad Sci USA 88: 5041–5045 (1991).Google Scholar
  83. 83.
    Flynn GC, Chappell TG, Rothman JE: Peptide binding and release by proteins implicated as catalysts of protein assembly. Science 245: 285–390 (1989).Google Scholar
  84. 84.
    Flynn GC, Pohl J, Flocco MT, Rothman JE: Peptide-binding specificity of the molecular chaperone BiP. Nature 353: 726–730 (1991).Google Scholar
  85. 85.
    Fontes EBP, Shank BB, Wrobel RL, Moose SP, OBrian GR, Wurtzel ET, Boston RS: Characterization of an immunoglobulin binding protein homologue in the maize floury-2 endosperm mutant. Plant Cell 3: 483–496 (1991).Google Scholar
  86. 86.
    Fourie AM, Sambrook JF, Gething M-JH: Common and divergent peptide binding specificities of hsp 70 molecular chaperones. J Biol Chem 269: 30470–30478 (1994).Google Scholar
  87. 87.
    Freedman RB: Protein disulphide isomerase: multiple roles in the modification of nascent secretory proteins. Cell 57: 1069–1072 (1989).Google Scholar
  88. 88.
    Freedman RB, Hirst TR, Tuite MF: Protein disulphide isomerase: building bridges in protein folding. Trends Biochem Sci 19: 331–336 (1994).Google Scholar
  89. 89.
    Frydman J, Nimmesgern E, Erdjument-Bromage H, Wall JS, Tempst P, Hartl F-U: Function in protein folding of TRiC, a cytosolic ring complex containing TCP-1 and structurally related subunits. EMBO J 11: 4767–4778 (1992).Google Scholar
  90. 90.
    Frydman J, Nimmesgern E, Ohtsuka K, Hartl FU: Folding of nascent polypeptide chains in a high molecular mass assembly with molecular chaperones. Nature 370: 111–117 (1994).Google Scholar
  91. 91.
    Gao Y, Thomas JO, Chow RL, Lee G-H, Cowan NJ: A cytoplasmic chaperonin that catalyzes β-actin folding. Cell 69: 1043–1050 (1992).Google Scholar
  92. 92.
    Gao Y, Vainberg IE, Chow RL, Cowan NJ: Two cofactors and cytoplasmic chaperonin are required for the folding of α-and β-tubulin. Mol Cell Biol 13: 2478–2485 (1993).Google Scholar
  93. 93.
    Gasser CS, Gunning DA, Budelier KA, Brown SM: Structure and expression of cytosolic cyclophilin/peptidyl-prolyl cistrans isomerase of higher plants and production of active tomato cyclophilin in Escherichia coli. Proc Natl Acad Sci USA 87: 9519–9523 (1990).Google Scholar
  94. 94.
    Gatenby AA: The chaperonins of photosynthetic organisms. In Ellis RJ (ed) The chapronins, Academic Press, pp. 65–90 (1996).Google Scholar
  95. 95.
    Gatenby AA, Ellis RJ: Chaperone function: the assembly of ribulose bisphosphate carboxylase-oxygenase. Annu Rev Cell Biol 6: 125–149 (1990).Google Scholar
  96. 96.
    Gatenby AA, Lubben TH, Ahlquist P, Keegstra K: Imported large subunits of ribulose bisphosphate carboxylase/oxygenase, but not imported β-ATP synthase sununits, are assembled into holoenzyme in isolated chloroplasts. EMBO J 7: 1307–1314 (1988).Google Scholar
  97. 97.
    Gatenby AA, Viitanen PV: Structural and functional aspects of chaperonin-mediated protein folding. Annu Rev Plant Physiol Plant Mol Biol 45: 469–491 (1994).Google Scholar
  98. 98.
    Geli MI, Torrent M, Ludevid D: Two structural domains mediate two sequential events in gamma-zein targeting: protein endoplasmic reticulum retention and protein body formation. Plant Cell 6: 1911–1922 (1994).Google Scholar
  99. 99.
    Georgopoulos C, Welch WJ: Role of the major heat shock proteins as molecular chaperones. Annu Rev Cell Biol 9: 601–634 (1993).Google Scholar
  100. 100.
    Gething M-J, Sambrook J: Protein folding in the cell. Nature 355: 33–45 (1992).Google Scholar
  101. 101.
    Gilbert HF: Protein chaperones and protein folding. Curr Opin Biotechnol 5: 534–539 (1994).Google Scholar
  102. 102.
    Gillikin JW, Boston RS: Plant BiPs. In: Gething MJ (ed) Guidebook to Molecular Chaperones and Protein Folding Catalysts. Sambrook and Tooze Publications at Oxford University Press, New York, in press (1996).Google Scholar
  103. 103.
    Gillikin JW, Fontes EPB, Boston RS: Protein-protein interactions in the endoplasmic reticulum. In: Galbraith D, Bourque D, Bohnert D (eds) Methods in Cell Biology Part B, pp. 309–323. Academic Press, New York (1995).Google Scholar
  104. 104.
    Goloubinoff P, Christeller JT, Gatenby AA, Lorimer GH: Reconstitution of active dimeric ribulose bisphosphate carboxylase from an unfolded state depends on two chaperonin proteins and Mg-ATP. Nature 342: 884–889 (1989).Google Scholar
  105. 105.
    Goloubinoff P, Gatenby AA, Lorimer GH: GroE heat-shock proteins promote assembly of foreign prokaryotic ribulose bisphosphate carboxylase oligomers in Escherichia coli. Nature 337: 44–47 (1989).Google Scholar
  106. 106.
    Gottesman S, Squires C, Pichersky E, Carrington M, Hobbs M, Mattick JS, Dalrymple B, Kuramitsu H, Shiroza T, Foster T, Clark WP, Ross B, Squires CL, Maurizi MR: Conservation of the regulatory subunit for the Clp ATP-dependent protease in prokaryotes and eukaryotes. Proc Natl Acad Sci 87: 3513–3517 (1991).Google Scholar
  107. 107.
    Gragerov A, Gottesman ME: Different peptide binding specificities of hsp 70 family members. J Mol Biol 241: 133–135 (1994).Google Scholar
  108. 108.
    Gray JC, Row PE: Protein translocation across chloroplast envelope membranes. Trends Cell Biol 5: 243–247 (1995).Google Scholar
  109. 109.
    Gray TE, Fersht AR: Cooperativity in ATP hydrolysis by GroEL is increased by GroES. FEBS Lett 292: 254–258 (1991).Google Scholar
  110. 110.
    Grynberg A, Nicolas J, Drapron R: Some characteristics of protein disulfide isomerase (E.C.5.3.4.1) from wheat (Triticum vulgare) embryo. Biochimie 60: 547–551 (1978).Google Scholar
  111. 111.
    Gupta RS. Phylogenetic analysis of the 90 kD heat shock family of protein sequences and an examination of the relationship among animals, plants, and fungi species. Mol Biol Evol 12: 1063–1073 (1995).Google Scholar
  112. 112.
    Gutteridge S, Gatenby AA: Rubisco synthesis, assembly, mechanism, and regulation. Plant Cell 7: 809–819 (1995).Google Scholar
  113. 113.
    Hartl FU, Martin J: Molecular chaperones in cellular protein folding. Curr Opin Struct Biol 5: 92–102 (1995).Google Scholar
  114. 114.
    Hartman DJ, Dougan D, Hoogenraad NJ, Hoj PB: Heat shock proteins of barley mitochondria and chloroplasts: Identification of organellar hsp 10 and 12: putative chaperonin 10 homologues. FEBS Lett 305: 147–150 (1992).Google Scholar
  115. 115.
    Hassan A-M, Wesson C, Trumble WR: Calreticulin is the major Ca++ storage protein in the endoplasmic reticulum of the pea plant (Pisum sativum). Biochem Biophys Res Commun 211: 54–59 (1995).Google Scholar
  116. 116.
    Hayman GT, Miernyk JA: The nucleotide and deduced amino acid sequences of a peptidyl-prolyl cis-trans isomerase from Arabidopsis thaliana. Biochim Biophys Acta 1219: 536–538 (1994).Google Scholar
  117. 117.
    Helm KW, LaFayette PR, Nagao RT, Key JL, Vierling E: Localization of small heat shock proteins to the higher plant endomembrane system. Mol Cell Biol 13: 238–247 (1993).Google Scholar
  118. 118.
    Helm KW, Schmeits J, Vierling E: An endomembrane-localized small heat-shock protein from Arabidopsis thaliana. Plant Physiol 107: 287–288 (1995).Google Scholar
  119. 119.
    Hemmingsen SM, Ellis RJ: Purification and properties of ribulosebisphosphate carboxylase large subunit binding protein. Plant Physiol 80: 269–276 (1986).Google Scholar
  120. 120.
    Hemmingsen SM, Woolford C, Van der Vies SM, Tilly K, Dennis DT, Georgopoulos CP, Hendrix R, Ellis RJ: Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature 333: 330–334 (1988).Google Scholar
  121. 121.
    Hendrick JP, Hartl F-U: Molecular chaperone functions of heat-shock proteins. Annu Rev Biochem 62: 349–384 (1993).Google Scholar
  122. 122.
    Hendrix RW: Purification and properties of groE, a host protein involved in bacteriophase lambda assembly. J Mol Biol 129: 375–392 (1979).Google Scholar
  123. 123.
    Holdridge C, Dorsett D: Repression of hsp70 heat shock gene transcription by the suppressor of hairy-wing protein of Drosophila melanogaster. Mol Cell Biol 11: 1894–1900 (1991).Google Scholar
  124. 124.
    Horwich AL. Molecular chaperones: resurrection or destruction. Curr Biol 5: 455–458 (1995).Google Scholar
  125. 125.
    Horwich AL, Willison KR: Protein folding in the cell: functions of two families of molecular chaperone, hsp 60 and TF55-TCP1. Phil Trans R Soc Lond [Biol] 339: 313–326 (1993).Google Scholar
  126. 126.
    Horwitz J: α-Crystallin can function as a molecular chaperone. Proc Natl Acad Sci USA 89: 10449–10453 (1992).Google Scholar
  127. 127.
    Höhfeld J, Minami Y, Hartl F-U: Hip, a novel cochaperone involved in the eukaryotic Hsc70/Hsp40 reaction cycle. Cell 83: 589–598 (1995).Google Scholar
  128. 128.
    Hsieh M-H, Chen J-T, Jinn T-L, Chen Y-M, Lin C-Y: A class of soybean low molecular weight heat shock proteins. Immunological study and quantitation. Plant Physiol 99: 1279–1284 (1992).Google Scholar
  129. 129.
    Huang L, Franklin AE, Hoffman NE: Primary structure and characterization of an Arabidopsis thaliana calnexin-like protein. J Biol Chem 268: 6560–6566 (1993).Google Scholar
  130. 130.
    Hubbs A, Roy H: Synthesis and assembly of large subunits into ribulose bisphosphate carboxylase/oxygenase in chloroplast extracts. Plant Physiol 100: 272–281 (1992).Google Scholar
  131. 131.
    Hubbs AE, Roy H: Assembly of in vitro synthesized large subunits into ribulose-bisphosphate carboxylase/oxygenase: formation and dischange of an L8-like species. J Biol Chem 268: 13519–13525 (1993).Google Scholar
  132. 132.
    Hubbs AE, Roy H: Assembly of in vitro-synthesized large subunits into ribulose bisphosphate carboxylase/oxygenase is sensitive to Cl-, requires ATP, and does not proceed when large subunits are synthesized at temperatures >32°C. Plant Physiol 101: 523–533 (1993).Google Scholar
  133. 133.
    Hultgren SJ, Jacob-Dubuisson F, Jones CH, Bränden C-I: PapD and superfamily of periplasmic immunoglobulin-like pilus chaperones. Adv Protein Chem 44: 99–123 (1993).Google Scholar
  134. 134.
    Hutchison KA, Stancato LF, Owens-Grillo JK, Johnson JL, Krishna P, Toft DO, Pratt WB: The 23-kDa acidic protein in reticulocyte lysate is the weakly bound component of the hsp foldosome that is required for assembly of the glucocorticoid receptor into a functional heterocomplex with hsp90. J Biol Chem 270: 18841–18847 (1995).Google Scholar
  135. 135.
    Inouye M. Intramolecular chaperone: the role of the propeptide in protein folding. Enzyme 45: 314–321 (1991).Google Scholar
  136. 136.
    Jackson GS, Staniforth RA, Halsall DJ, Atkinson T, Holbrook JJ, Clarke AR, Burston SG: Binding and hydrolysis of nucleotides in the chaperonin catalytic cycle: Implication for the mechanism of assisted protein folding. Biochemistry 32: 2554–2563 (1993).Google Scholar
  137. 137.
    Jaenicke R, Creighton TE: Protein folding: Junior chaperones. Curr Biol 3: 234–235 (1993).Google Scholar
  138. 138.
    Jakob U, Buchner J: Assisting spontaneity: The role of Hsp90 and small Hsps as molecular chaperones. Trends Biochem Sci 19: 205–211 (1994).Google Scholar
  139. 139.
    Jakob U, Gaestel M, Engel K, Buchner J: Small heat shock proteins are molecular chaperones. J Biol Chem 268: 1517–1520 (1993).Google Scholar
  140. 140.
    Jakob U, Lilie H, Meyer I, Buchner J: Transient interaction of Hsp90 with early unfolding intermediates of citrate synthase. Implications for heat shock in vivo. J Biol Chem 270: 7288–7294 (1995).Google Scholar
  141. 141.
    Jakob U, Meyer I, Bügl H, André S, Bardwell JCA, Buchner J: Structural organization of procaryotic and eucaryotic Hsp90. Influence of divalent cations on structure and function. J Biol Chem 270: 14412–14419 (1995).Google Scholar
  142. 142.
    Jin Y-J, Albers MW, Lane WS, Bierer BE, Schreiber SL, Burakoff SJ. Molecular cloning of a membrane-associated human FK506- and rapamycin-binding protein, FKBP-13. Proc Natl Acad Sci USA 88: 6677–6681 (1991).Google Scholar
  143. 143.
    Jinn T-L, Chen Y-M, Lin C-Y: Characterization and physiological function of class I low molecular weight heat shock protein complexes in soybean. Plant Physiol 108: 693–701 (1995).Google Scholar
  144. 144.
    Jinn TL, Yeh YC, Chen YM, Lin C-Y: Stabilization of soluble proteins in vitro by heat shock proteins-enriched ammonium sulfate fraction from soybean seedlings. Plant Cell Physiol 30: 463–469 (1989).Google Scholar
  145. 145.
    Jones AM, Herman EM: KDEL-containing auxin binding protein is secreted to the plasma membrane and cell wall. Plant Physiol 101: 595–606 (1993).Google Scholar
  146. 146.
    Kalinski A, Rowley DL, Loer DS, Foley C, Buta G, Herman EM. Binding-protein expression is subject to temporal, developmental and stress-induced regulation in terminally differentiated soybean organs. Planta 195: 611–621 (1995).Google Scholar
  147. 147.
    Keith B, Dong X, Ausubel FM, Fink GR: Differential induction of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase genes in Arabidopsis thaliana by wounding and pathogenic attack. Proc Natl Acad Sci USA 88: 8821–8825 (1991).Google Scholar
  148. 148.
    Kim PS, Arvan P. Calnexin and BiP act as sequential molecular chaperones during thyroglobulin folding in the endoplasmic reticulum. J Cell Biol 128: 29–38 (1995).Google Scholar
  149. 149.
    Kim S, Willison KR, Horwich AL: Cystosolic chaperonin subunits have a conserved ATPase domain but diverged polypeptide-binding domains. Trends Biochem Sci 19: 543–548 (1994).Google Scholar
  150. 150.
    Kimura Y, Yahara I, Lindquist S: Role of the protein chaperone YDJ1 in establishing Hsp90-mediated signal transduction pathways. Science 268: 1362–1365 (1995).Google Scholar
  151. 151.
    Kirsch T, Beevers L. Uncoating of clathrin-coated vesicles by uncoating ATPase from developing peas. Plant Physiol 103: 205–212 (1993).Google Scholar
  152. 152.
    Knack G, Liu Z, Kloppstech K: Low molecular mass heat-shock proteins of a light-resistant photoautotrophic cell culture. Eur J Cell Biol 59: 166–175 (1992).Google Scholar
  153. 153.
    Knarr G, Gething MJ, Modrow S, Buchner J: BiP binding sequences in antibodies. J Biol Chem 270: 27589–27594 (1995).Google Scholar
  154. 154.
    Knittler MR, Haas IG: Interaction of BiP with newly synthesized immunoglobulin light chain molecules: Cycles of sequential binding and release. EMBO J 11: 1573–1581 (1992).Google Scholar
  155. 155.
    Ko K, Bornemisza O, Kourtz L, Ko ZW, Plaxton WC, Cashmore AR: Isolation and characterization of a cDNA clone encoding a cognate 70-kDa heat shock protein of the chloroplast envelope. J Biol Chem 267: 2986–2993 (1992).Google Scholar
  156. 156.
    Koch GLE: In: Rothblatt J, Novick P, Guidebook to the Secretory Pathway, pp. 82–83. Sambrook and Tooze Publications at Oxford University Press, New York (1994).Google Scholar
  157. 157.
    Kong TH, Coates ARM, Butcher PD, Hickman CJ, Shinnick TM: Mycobacterium tuberculosis expresses two chaperonin-60 homologues. Proc Natl Acad Sci USA 90: 2608–2612 (1993).Google Scholar
  158. 158.
    Koning AJ, Rose R, Comai L: Developmental expression of tomato heat-shock cognate protein 80. Plant Physiol 100: 801–811 (1992).Google Scholar
  159. 159.
    Koonin EV, van der Vies SM: Conserved sequence motifs in bacterial and bacteriophage chaperonins. Trends Biochem Sci 20: 14–15 (1995).Google Scholar
  160. 160.
    Krishna P, Sacco M, Cherutti JF, Hill S: Cold-induced accumulation of hsp90 transcripts in Brassica napus. Plant Physiol 107: 915–923 (1995).Google Scholar
  161. 161.
    Kruse E, Kloppstech K: Heat shock proteins in plants: an approach to understanding the function of plastid heat shock proteins. In: Barber J (ed), The Photosystems: Structure, Function and Molecular Biology, pp. 409–442. Elsevier Science Publishers, Amsterdam (1992).Google Scholar
  162. 162.
    Kubota H, Hynes G, Carne A, Ashworth A, Willison K: Identification of six Tcp-1-related genes encoding divergent subunits of the TCP-1-containing chaperonin. Curr Biol 4: 89–99 (1994).Google Scholar
  163. 163.
    LaFayette PR, Nagao RT, O'Grady K, Vierling E, Key JL. Molecular characterization of cDNAs encoding low-molecular-weight heat shock proteins of soybean organelles. Plant Mol Biol 30: 159–169 (1996).Google Scholar
  164. 164.
    Laminet AA, Ziegelhoffer T, Georgopoulos C, Plückthun A: The Escherichia coli heat shock proteins GroEL and GroES modulate the folding of the β-lactamase precursor. EMBO J 9: 2315–2319 (1990).Google Scholar
  165. 165.
    Landry SJ, Gierasch LM: Polypeptide interactions with molecular chaperones and their relationship to in vivo protein folding. Annu Rev Biophys Biomol Struct 23: 645–669 (1994).Google Scholar
  166. 166.
    Landry SJ, Zeilstra-Ryalls J, Fayet O, Georgopoulos C, Gierasch LM. Characterization of a functionally important mobile domain of GroES. Nature 364: 255–258 (1993).Google Scholar
  167. 167.
    Langer T, Pfeifer G, Martin J, Baumeister W, Hartl F-U: Chaperonin-mediated protein folding: GroES binds to one end of the GroEL cylinder, which accommodates the protein substrate within its central cavity. EMBO J 11: 4757–4765 (1992).Google Scholar
  168. 168.
    Lata Singla S, Grover A: Antibodies raised against yeast HSP 104 cross-react with a heat and abscisic acid-regulated polypeptide in rice. Plant Mol Biol 22: 1177–1180 (1993).Google Scholar
  169. 169.
    Lee AS: Coordinated regulation of a set of genes by glucose and calcium ionophores in mammalian cells. Trends Biochem Sci 12: 20–23 (1987).Google Scholar
  170. 170.
    Lee GJ, Pokala N, Vierling E: Structure and in vitro molecular chaperone activity of cytosolic small heat shock proteins from pea. J Biol Chem 270: 10432–10438 (1995).Google Scholar
  171. 171.
    Lee JH, Hübel A, Schöffl F: Derepression of the activity of genetically engineered heat shock factor causes constitutive synthesis of heat shock proteins and increased thermotolerance in transgenic Arabidopsis. Plant J 8: 603–609 (1995).Google Scholar
  172. 172.
    Lee Y-RJ, Nagao RT, Key JL: A soybean 101-kD heat shock protein complements a yeast HSP 104 deletion mutant in acquiring thermotolerance. Plant Cell 6: 1889–1897 (1994).Google Scholar
  173. 173.
    Lehel C, Los D, Wada H, Györgyei J, Horváth I, Kovács E, Murata N, Vigh L: A second groEL-like gene, organized in a groEL operon is present in the genome of Synechocystis sp. PCC 6803. J Biol Chem 268: 1799–1804 (1993).Google Scholar
  174. 174.
    Lenne C. Sequence and expression of the mRNA encoding HSP22, the mitochondrial small heat-shock protein in pea leaves. Biochem J 311: 805–813 (1995).Google Scholar
  175. 175.
    Lenne C, Douce R. A low molecular mass heat-shock protein is localized to higher plant mitochondria. Plant Physiol 105: 1255–1261 (1994).Google Scholar
  176. 176.
    Leonhardt SA, Fearon K, Danese PN, Mason TL: HSP78 encodes a yeast mitochondrial heat shock protein in the Clp family of ATP-dependent proteases. Mol Cell Biol 13: 6304–6313 (1993).Google Scholar
  177. 177.
    Leustek T, Amir-Shapira D, Toledo H, Brot N, Weissbach H: Autophosphorylation of 70 kDa heat shock proteins. Cell Mol Biol 38: 1–10 (1992).Google Scholar
  178. 178.
    Lewis VA, Hynes GM, Zheng D, Saibil H, Willison K: T-complex polypeptide-1 is a subunit of a heteromeric particle in the eukaryotic cytosol. Nature 358: 249–252 (1992).Google Scholar
  179. 179.
    Li C-P, Larkins BA: Expression of protein disulfide isomerase is elevated in the endosperm of the maize floury-2 mutant. Plant Mol Biol, in press (1996).Google Scholar
  180. 180.
    Li X, Henry R, Yuan J, Cline K, Hoffman NE: A chloroplast homologue of the signal recognition particle subunit SRP54 is involved in the posttranslational integration of a protein into thylakoid membranes. Proc Natl Acad Sci USA 92: 3789–3793 (1995).Google Scholar
  181. 181.
    Li X, Wu Y, Zhang D-Z, Gillikin JW, Boston RS, Franceschi VR, Okita TW: Rice prolamine protein body biogenesis: a BiP-mediated process. Science 262: 1054–1056 (1993).Google Scholar
  182. 182.
    Liberek K, Marszalek J, Ang D, Georgopoulos C, Zylicz M: Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate ATPase activity of DnaK. Proc Natl Acad Sci USA 88: 2874–2878 (1991).Google Scholar
  183. 183.
    Lin T-Y, Duck NB, Winter J, Folk WR: Sequences of two hsc 70 cDNAs from Lycopersicon esculentum. Plant Mol Biol 16: 475–478 (1991).Google Scholar
  184. 184.
    Lin X, Chern M, Zimmerman JL: Cloning and characterization of a carrot hsp 70 gene. Plant Mol Biol 17: 1245–1249 (1991).Google Scholar
  185. 185.
    Lindquist S, Craig EA: The heat shock proteins. Annu Rev Genet 22: 631–677 (1988).Google Scholar
  186. 186.
    Lippuner V, Chou IT, Scott SV, Ettinger WF, Theg SM, Gasser CS: Cloning and characterization of chloroplast and cytosolic forms of cyclophilin from Arabidopsis thaliana. J Biol Chem 269: 7863–7868 (1994).Google Scholar
  187. 187.
    Lissin NM: In vitro dissociation and self-assembly of three chaperonin 60s: the role of ATP. FEBS Lett 361: 55–60 (1995).Google Scholar
  188. 188.
    Lissin NM, Venyaminov SY, Girshovich AS: (Mg-ATP)-dependent self-assembly of molecular chaperone GroEL. Nature 348: 339–342 (1990).Google Scholar
  189. 189.
    Lorimer GH. Role of accessory proteins in protein folding. Curr Biol 2: 26–34 (1992).Google Scholar
  190. 190.
    Luan S, Albers MW, Schreiber SL: Light-regulated, tissue-specific immunophilins in a higher plant. Proc Natl Acad Sci USA 91: 984–988 (1994).Google Scholar
  191. 191.
    Luan S, Lane WS, Schreiber SL: pCyP B: a chloroplast-localized, heat shock-responsive cyclophilin from fava bean. Plant Cell 6: 885–892 (1994).Google Scholar
  192. 192.
    Luan S, Li W, Rusnak F, Assmann SM, Schreiber SL: Immunosuppressants implicate protein phosphatase regulation of K+ channels in guard cells. Proc Natl Acad Sci USA 90: 2202–2206 (1993).Google Scholar
  193. 193.
    Lubben TH, Donaldson GK, Viitanen PV, Gatenby AA: Several proteins imported into chloroplasts form stable complexes with the GroEL-related chloroplast molecular chaperone. Plant Cell 1: 1223–1230 (1989).Google Scholar
  194. 194.
    Lubben TH, Gatenby AA, Donaldson GK, Lorimer GH, Viitanen PV: Identification of a groES-like chaperonin in mitochondria that facilitates protein folding. Proc Natl Acad Sci USA 87: 7683–7687 (1990).Google Scholar
  195. 195.
    Madueno F, Napier JA, Gray JC: Rieske iron-sulfur protein associates with both cpn60 and hsp70 in the chloroplast stroma. Plant Cell 5: 1865–1876 (1993).Google Scholar
  196. 196.
    Marocco A, Santucci A, Cerioli S, Motto M, Di Fonzo N, Thompson R, Salamini F: Three high-lysine mutations control the level of ATP-binding HSP70-like proteins in the maize endosperm. Plant Cell 3: 507–515 (1991).Google Scholar
  197. 197.
    Marrs KA, Casey ES, Capitant SA, Bouchard RA, Dietrich PS, Mettler IJ, Sinibaldi RM: Characterization of two maize hsp90 heat shock protein genes: expression during heat shock, embryogenesis, and pollen development. Devel Genet 14: 27–41 (1993).Google Scholar
  198. 198.
    Marshall JS, DeRocher AE, Keegstra K, Vierling E: Identification of heat shock protein hsp70 homologues in chloroplasts. Proc Natl Acad Sci USA 87: 374–378 (1990).Google Scholar
  199. 199.
    Marshall JS, Keegstra K. Isolation and characterization of a cDNA clone encoding the major Hsp70 of the pea chloroplastic stroma. Plant Physiol 100: 1048–1054 (1992).Google Scholar
  200. 200.
    Martel R, Cloney LP, Pelcher LE, Hemmingsen SM: Unique composition of plastid chaperonin-60: α and β polypeptide-encoding genes are highly divergent. Gene 94: 181–187 (1990).Google Scholar
  201. 201.
    Martin J, Langer T, Boteva R, Schramel A, Horwich AL, Hartl F-U: Chaperonin-mediated protein folding at the surface of groEL through a ‘molten globule’-like intermediate. Nature 352: 36–42 (1991).Google Scholar
  202. 202.
    Martin J, Mayhew M, Langer T, Hartl FU: The reaction cycle of GroEL and GroES in chaperonin-assisted protein folding. Nature 366: 228–233 (1993).Google Scholar
  203. 203.
    Martinus RD, Ryan MT, Naylor DJ, Herd SM, Hoogenraad NJ, Hoj PB: Role of chaperones in the biogenesis and main-tenance of the mitochondrion. FASEB J 9: 371–378 (1995).Google Scholar
  204. 204.
    Matouschek A, Rospert S, Schmid K, Glick BS, Schatz G: Cyclophilin catalyzes protein folding in yeast mitochondria. Proc Natl Acad Sci USA 92: 6319–6323 (1995).Google Scholar
  205. 205.
    Melki R, Cowan NJ: Facilitated folding of actins and tubulins occurs via a nucleotide-dependent interaction between cytoplasmic chaperonin and distinctive folding intermediates. Mol Cell Biol 14: 2895–2904 (1994).Google Scholar
  206. 206.
    Melnick J, Aviel S, Argon Y: The endoplasmic reticulum stress protein GRP94, in addition to BiP, associates with unassembled immunoglobulin chains. J Biol Chem 267: 21303–21306 (1992).Google Scholar
  207. 207.
    Melnick J, Dul JL, Argon Y: Sequential interaction of the chaperones BiP and GRP94 with immunoglobulin chains in the endoplasmic reticulum. Nature 370: 373–375 (1994).Google Scholar
  208. 208.
    Menegazzi P, Guzzo F, Baldan B, Mariani P, Treves S: Purification of calreticulin-like protein(s) from spinach leaves. Biochem Biophys Res Commun 190: 1130–1135 (1993).Google Scholar
  209. 209.
    Merck KB, Groenen PJTA, Voorter CEM, de Haard-Hoekman WA, Horwitz J, Bloemendal H, de Jong WW. Structural and functional similarities of bovine α-crystallin and mouse small heat-shock protein. A family of chaperones. J Biol Chem 268: 1046–1052 (1993).Google Scholar
  210. 210.
    Miernyk JA, Duck NB, Shatters RGJr., Folk WR: The 70-kilodalton heat shock cognate can act as a molecular chaperone one during the membrane translocation of a plant secretory protein precurson. Plant Cell 4: 821–829 (1992).Google Scholar
  211. 211.
    Miernyk JA, Hayman GT. ATPase activity and molecular chaperone function of the stress70 proteins. Plant Physiol 110: 419–424 (1996).Google Scholar
  212. 212.
    Miller SG, Leclerc RF, Erdos RF: Identification and characterization of a testis-specific isoform of a chaperonin in a moth, Heliothis virescens. J Mol Biol 214: 407–422 (1990).Google Scholar
  213. 213.
    Milos P, Roy H. ATP-released L subunits participate in the assembly of ribulose bisphosphate carboxylase. J Cell Biochem 24: 153–162 (1984).Google Scholar
  214. 214.
    Moore T, Keegstra K: Characterization of a cDNA clone encoding a chloroplast-targeted Clp homologue. Plant Mol Biol 21: 525–537 (1993).Google Scholar
  215. 215.
    Mori M, Murata K, Kubota H, Yamamoto A, Matsushiro A, Morita T: Cloning of a cDNA encoding the Tcp-1 (t complex polypeptide 1) homologue of Arabidopsis thaliana. Gene 122: 381–382 (1992).Google Scholar
  216. 216.
    Morimoto R, Tissières A, Georgopolous C: The biology of heat shock proteins and molecular chaperones. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1994).Google Scholar
  217. 217.
    Mummert E, Grimm R, Speth V, Eckerskorn C, Schiltz E, Gatenby AA, Schäfer E: A TCP1-related molecular chaperone from plants refolds phytochrome to its photoreversible form. Nature 363: 644–648 (1993).Google Scholar
  218. 218.
    Mummert E, Grimm R, Speth V, Eckerskorn C, Schiltz E, Gatenby AA, Schäfer E. A TCP1-related molecular chaperone from plants refolds phytochrome to its photoreversible form-Correction. Nature 372: 709 (1994).Google Scholar
  219. 219.
    Musgrove JE, Johnson RA, Ellis RJ: Dissociation of the ribulosebisphosphate-carboxylase large-subunit binding protein into dissimilar subunits. Eur J Biochem 163: 529–534 (1987).Google Scholar
  220. 220.
    Müller FW, Igloi GL, Beck CF: Structure of a gene encoding heat-shock protein HSP70 from the unicellular alga Chlamydomonas reinhardtii. Gene 111: 165–173 (1992).Google Scholar
  221. 221.
    Napier RM, Fowke LC, Hawes C, Lewis M, Pelham HRB: Immunological evidence that plants use both HDEL and KDEL for targeting proteins to the endoplasmic reticulum. J Cell Sci 102: 261–271 (1992).Google Scholar
  222. 222.
    Nathan DF, Lindquist S: Mutational analysis of Hsp90 function: interactions with a steroid receptor and a protein kinase. Mol Cell Biol 15: 3917–3925 (1995).Google Scholar
  223. 223.
    Neumann D, Emmermann M, Thierfelder JM, Nieden U, Clericus M, Braun HP, Nover L, Schmitz UK: HSP68-a DnaK-like heat-stress protein of plant mitochondria. Planta 190: 32–43 (1993).Google Scholar
  224. 224.
    Nielsen JB, Foor F, Siekierka JJ, Hsu M-J, Ramadan N, Morin N, Shafiee A, Dahl AM, Brizuela G, Chrebet G, Bostian KA, Parent SA. Yeast FKBP-13 is a membrane-associated FK506-binding protein encoded by the nonessential gene FKB2. Proc Natl Acad Sci USA 89: 7471–7475 (1992).Google Scholar
  225. 225.
    Nieto-Sotelo J, Vierling E, Ho T-HD: Cloning, sequence analysis, and expression of a cDNA encoding a plastid-localized heat shock protein in maize. Plant Physiol 93: 1321–1328 (1990).Google Scholar
  226. 226.
    Normington K, Kohno K, Kozutsumi Y, Gething M-J, Sambrook J: S. cerevisiae encodes an essential protein homologous in sequence and function to mammalian BiP. Cell 57: 1223–1236 (1989).Google Scholar
  227. 227.
    Okita TW, Rogers JC: Compartmentation of proteins in the endomembrane system of plant cells. Annu Rev Plant Physiol Plant Mol Biol, in press (1996).Google Scholar
  228. 228.
    Palleros DR, Reid KL, Shi L, Welch WJ, Fink AL: ATP-induced protein-Hsp70 complex dissociation requires K+ but not ATP hydrolysis. Nature 365: 664–666 (1993).Google Scholar
  229. 229.
    Parker W, Wells TA, Meza-Keuthen S, Kim I-S, Song P-S: Purification and characterization of a 60-kDa protein from oat, formerly known as a TCP1-related chaperone. J Protein Chem 14: 53–58 (1995).Google Scholar
  230. 230.
    Parsell DA, Kowal AS, Singer MA, Lindquist S: Protein disaggregation mediated by heat-shock protein Hsp 104. Nature 372: 475–478 (1994).Google Scholar
  231. 231.
    Parsell DA, Lindquist S: The function of heat-shock proteins in stress tolerance: degradation and reactivation of proteins. Annu Rev Genet 27: 437–496 (1993).Google Scholar
  232. 232.
    Parsell DA, Sanchez Y, Stizel JD, Lindquist S: Hsp 104 is a highly conserved protein with two essential nucleotide-binding sites. Nature 353: 270–273 (1991).Google Scholar
  233. 233.
    Pedrazzini E, Giovinazzo G, Bollini R, Ceriotti A, Vitale A: Binding of BiP to an assembly-defective protein in plant cells. Plant J 5: 103–110 (1994).Google Scholar
  234. 234.
    Pedrazzini E, Vitale A: The binding protein, BiP, and the synthesis of secretory proteins. Plant Physiol Biochem 34: 207–216 (1996).Google Scholar
  235. 235.
    Pelham HRB: Function of the hsp 70 protein family: an overview. In: Morimoto RI, Tissieres A, Georgopoulos C (eds) Stress Proteins in Biology and Medicine, pp. 287–299. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1990).Google Scholar
  236. 236.
    Phipps BM, Hoffmann A, Stetter KO, Baumeister W: A novel ATPase complex selectively accumulated upon heat shock is a major cellular component of thermophilic archaebacteria. EMBO J 10: 1711–1722 (1991).Google Scholar
  237. 237.
    Phipps BM, Typke D, Hegerl R, Volker S, Hoffmann A, Stetter KO, Baumeister W: Structure of a molecular chaperone from a thermophilic archaebacterium. Nature 361: 475–477 (1993).Google Scholar
  238. 238.
    Picard D, Khursheed B, Garabedian MJ,Fortin MG, Lindquist S, Yamamoto KR: Reduced levels of hsp90 compromise steroid receptor action in vivo. Nature 348: 166–168 (1990).Google Scholar
  239. 239.
    Picketts DJ, Mayanil CSK, Gupta RS: Molecular cloning of a Chinese hamster mitochondrial protein related to the ‘chaperonin’ family of bacterial and plant proteins. J Biol Chem 264: 12001–12008 (1989).Google Scholar
  240. 240.
    Polissi A, Goffin L, Georgopoulos C: The Escherichia coli heat shock response and bacteriophage lambda development. FEMS Microbiol Rev 17: 159–169 (1995).Google Scholar
  241. 241.
    Prasad TK, Hallberg RL: Identification and metabolic characterization of the Zea mays mitochondrial homologue of the Escherichia coli GroEL protein. Plant Mol Biol 12: 609–618 (1989).Google Scholar
  242. 242.
    Pratt WB: The role of heat shock proteins in regulating the function, folding, and trafficking of the glucocorticoid recepton. J Biol Chem 268: 21455–21458 (1993).Google Scholar
  243. 243.
    Preisig-Müller R, Kindl H: Plant dnaJ homologue: molecular cloning, bacterial expression, and expression analysis in tissues of cucumber seedlings. Arch Biochem Biophys 305: 30–37 (1993).Google Scholar
  244. 244.
    Pushkin AV, Tsuprun VL, Solovjeva NA, Shubin VV, Evstigneeva ZG, Kretovich WL: High molecular weight pea leaf protein similar to the groE protein of Escherichia coli. Biochim Biophys Acta 704: 379–384 (1982).Google Scholar
  245. 245.
    Quaite-Randall E, Trent JD, Josephs R., Joachimiak A: Conformational cycle of the Archaeosome, a TCP1-like chaperonin from Sulfolobus shibatae. J Biol Chem 270: 28818–28823 (1995).Google Scholar
  246. 246.
    Rassow J, Voos W, Pfanner N: Partner proteins determine multiple functions of Hsp 70. Trends Cell Biol 5: 207–212 (1995).Google Scholar
  247. 247.
    Reith M, Munholland J: An hsp70 homologue is encoded on the plastid genome of the red alga, Porphyra umbilicalis. FEBS Lett 294: 116–120 (1991).Google Scholar
  248. 248.
    Rippmann F, Taylor WR, Rothbard JB, Green NM: A hypothetical model for the peptide binding domain of hsp 70 based on the peptide binding domain of HLA. EMBO J 10: 1053–1059 (1991).Google Scholar
  249. 249.
    Roberts JK, Key JL: Isolation and characterization of a soybean hsp70 gene. Plant Mol Biol 16: 671–683 (1991).Google Scholar
  250. 250.
    Rochester DE, Winter JA, Shah DM: The structure and expression of maize genes encoding the major heat shock proteins, hsp70. EMBO J 5: 451–458 (1986).Google Scholar
  251. 251.
    Roden LT, Miflin BJ, Freedman RB: Protein disulphide-isomerase is located in the endoplasmic reliculum of developing wheat endosperm. FEBS Lett 138: 121–124 (1982).Google Scholar
  252. 252.
    Rommelaere H, Van Troys M, Gao Y, Melki R, Cowan NJ, Vandekerckhove J, Ampe C: Eukaryotic cytosolic chaperonin contains t-complex polypeptide 1 and seven related subunits. Proc Natl Acad Sci USA 90: 11975–11979 (1993).Google Scholar
  253. 253.
    Rose MD, Misra LM, Vogel JP: KAR2, a karyogamy gene, is the yeast homologue of the mammalian BIP/GRP78 gene. Cell 57: 1211–1221 (1989).Google Scholar
  254. 254.
    Rospert S, Glick BS, Jenö P, Schatz G, Todd MJ, Lorimer GH, Viitanen PV: Identification and functional analysis of chaperonin 10, the groES homologue from yeast mitochondria. Proc Natl Acad Sci USA 90: 10967–10971 (1993).Google Scholar
  255. 255.
    Rospert S, Junne T, Glick BS, Schatz G: Cloning and disruption of the gene encoding yeast mitochondrial chaperonin 10, the homolog of E. coli groES. FEBS Lett 335: 358–360 (1993).Google Scholar
  256. 256.
    Rothblatt J, Novick P, Stevens T: Guidebook to the Secretory Pathway. Sambrook and Tooze Publications at Oxford University Press, New York (1994).Google Scholar
  257. 257.
    Rowling PJE: Folding, assembly and posttranslational modification of proteins within the lumen of the endoplasmic reticulum. Subcell Biochem 21: 41–80 (1993).Google Scholar
  258. 258.
    Roy H: Rubisco assembly: a model system for studying the mechanism of chaperonin action. Plant Cell 1: 1035–1042 (1989).Google Scholar
  259. 259.
    Roy H, Bloom M, Milos P, Monroe M: Studies on the assembly of large subunits of ribulose bisphosphate carboxylase in isolated pea chloroplasts. J Cell Biol 94: 20–27 (1982).Google Scholar
  260. 260.
    Roy H, Hubbs A, Cannon S: Stability and dissociation of the large subunit of RuBisCo binding protein complexes in vitro and in organello. Plant Physiol 86: 50–53 (1988).Google Scholar
  261. 261.
    Rutherford SL, Zuker CS: Protein folding and the regulation of signaling pathways. Cell 79: 1129–1132 (1994).Google Scholar
  262. 262.
    Saibil HR, Zheng D, Roseman AM, Hunter AS, Watson GMF, Chen S, Auf der Mauer A, O'Hara BP, Wood SP, Mann NH, Barnett LK, Ellis RJ: ATP induces large quaternary rearrangements in a cage-like chaperonin structure. Curr Biol 3: 265–273 (1993).Google Scholar
  263. 263.
    Sanchez Y, and Lindquist SL: HSP104 required for induced thermotolerance. Science 248: 1112–1115 (1990).Google Scholar
  264. 264.
    Sanchez Y, Taulien J, Borkovich KA, Lindquist S: Hsp104 is required for tolerance to many forms of stress. EMBO J 11: 2357–2364 (1992).Google Scholar
  265. 265.
    Sanders SL, Whitfield KM, Vogel JP, Rose MD, Schekman RW: Sec61p and BiP directly facilitate polypeptide translocation into the ER. Cell 69: 353–365 (1992).Google Scholar
  266. 266.
    Scaramuzzi CD, Stokes HW, Hiller RG: Heat shock Hsp70 protein is chloroplast-encoded in the chromophytic alga Pavlova lutherii. Plant Mol Biol 18: 467–476 (1992).Google Scholar
  267. 267.
    Schaller A, Ryan CA: Cloning of a tomato cDNA (Gen-Bank L388581) encoding the proteolytic subunit of a Clp-like energy dependent proteolysis. Plant Physiol 108: 1341 (1995).Google Scholar
  268. 268.
    Schirmer EC, Lindquist S, Vierling E: An Arabidopsis heat shock protein complements a thermotolerance defect in yeast. Plant Cell 6: 1899–1909 (1994).Google Scholar
  269. 269.
    Schirmer EC, Lindquist SL: The HSP100 family, In: Gething MJ (ed), Guidebook to Molecular Chaperones and Protein Folding Catalysts. Oxford University Press, in press (1966).Google Scholar
  270. 270.
    Schmid FX, Mayr LM, Mucke M, Schonbrunner ER: Prolyl isomerases: role in protein folding. Adv Protein Chem 44: 25–66 (1993).Google Scholar
  271. 271.
    Schmidt M, Buchner J, Todd MJ, Lorimer GH, Viitanen PV: On the role of groES in the chaperonin-assisted folding reaction. Three case studies. J Biol Chem 269: 10304–10311 (1994).Google Scholar
  272. 272.
    Schmidt M, Rutkat K, Rachel R, Pfeifer G, Jaenicke R, Viitanen P, Lorimer G, Buchner J: Symmetric complexes of GroE chaperonins as part of the functional cycle. Science 265: 656–659 (1994).Google Scholar
  273. 273.
    Schmitt M, Neupert W, Langer T: Hsp78, a Clp homologue within mitochondria, can substitute for chaperone functions of mt-hsp70. EMBO J 14: 3434–3444 (1995).Google Scholar
  274. 274.
    Schnell DJ, Kessler F, Blobel G: Isolation of components of the chloroplast protein import machinery. Science 266: 1007–1012 (1994).Google Scholar
  275. 275.
    Schreiber SL: Chemistry and biology of the immunophillins and their immunosuppressive ligands. Science 251: 283–287 (1991).Google Scholar
  276. 276.
    Schroder G, Beck M, Eichel J, Vetter H, Schroder J: HSP90 homologue from Madagascar periwinkle (Catharanthus roseus): cDNA sequence, regulation of protein expression and location in the endoplasmic reticulum. Plant Mol Biol 23: 583–598 (1993).Google Scholar
  277. 277.
    Shanklin J, DeWitt ND, Flanagan JM: The stroma of higher plant plastids contain ClpP and ClpC, functional homologues of E. coli ClpP and ClpA: a two component ATP-dependent protease. Plant Cell 7: 1713–1722 (1995).Google Scholar
  278. 278.
    Shimoni Y, Segal G, Zhu X, Galili G: Nucleotide sequence of a wheat cDNA encoding protein disuphide isomerase. Plant Physiol 107: 281 (1995).Google Scholar
  279. 279.
    Shorrosh BS, Dixon RA: Molecular cloning of a putative plant endomembrane protein resembling vertebrate protein disulfide-isomerase and a phosphatidylinositol-specific phospholipase C. Proc Natl Acad Sci USA 88: 10941–10945 (1991).Google Scholar
  280. 280.
    Shorrosh BS, Dixon RA: Molecular characterization and expression of an alfalfa protein with sequence similarity to mammalian ERp72, a glucose-regulated endoplasmic reticulum protein containing active site sequences of protein disphide isomerase. Plant J 2: 51–58 (1992).Google Scholar
  281. 281.
    Shorrosh BS, Subramaniam J, Schubert KR, Dixon RA: Expression and localization of plant protein disulfide isomerase. Plant Physiol 103: 719–726 (1993).Google Scholar
  282. 282.
    Silver PA, Way JC: Eukaryotic dnaJ homologues and the specificity of Hsp70 activity. Cell 74: 5–6 (1993).Google Scholar
  283. 283.
    Simons JF, Ferro-Novick S, Rose MD, Helenius A: BiP/Kar2p serves as a molecular chaperone during carboxypeptidase Y folding in yeast. J Cell Biol 130: 41–49 (1995).Google Scholar
  284. 284.
    Squires C, Squires CL: The Clp proteins: proteolysis regulators or molecular chaperones. J Bact 174: 1081–1085 (1992).Google Scholar
  285. 285.
    Strsalka K, Tsugeki R, Nishimura M: Heat shock induces synthesis of plastid-associated hsp70 in etiolated and greening pumpkin seedlings. Fol Histochem Cytobiol 32: 45–49 (1994).Google Scholar
  286. 286.
    Stuart RA, Cyr DM, Craig EA, Neupert W: Mitochondrial molecular chaperones: their role in protein translocation. Trends Biochem Sci 19: 87–92 (1994).Google Scholar
  287. 288.
    Takahashi T, Naito S, Komeda Y: Isolation and analysis of the expression of two genes for the 81-kilodalton heat-shock proteins from Arabidopsis. Plant Physiol 99: 383–390 (1992).Google Scholar
  288. 289.
    Takenaka IM, Hightower LE: Transforming growth factor-β1 rapidly induces Hsp70 and Hsp90 molecular chaperones in cultured chicken embryo cells. J Cell Physiol 152: 568–577 (1992).Google Scholar
  289. 290.
    Todd MJ, Viitanen PV, Lorimer GH: Hydrolysis of adenosine 5′-triphosphate by Escherichia coli GroEL: Effects of GroES and potassium ion. Biochemistry 32: 8560–8567 (1993).Google Scholar
  290. 291.
    Todd MJ, Viitanen PV, Lorimer GH: Dynamics of the chaperonin ATPase cycle: implications for facilitated protein folding. Science 265: 659–666 (1994).Google Scholar
  291. 292.
    Tsugeki R, Mori H, Nishimura M: Purification, cDNA cloning and Northern-blot analysis of mitochondrial chaperonin 60 from pumpkin cotyledons. Eur J Biochem 209: 453–458 (1992).Google Scholar
  292. 293.
    Tsugeki R, Nishimura M: Interaction of homologues of Hsp70 and Cpn60 with ferredoxin-NADP+ reductase upon its import into chloroplasts. FEBS Lett 320: 198–202 (1993).Google Scholar
  293. 294.
    Tsuprun VL, Boekema EJ, Samsonidze TG, Pushkin A: Electron microscopy of the complexes of ribulose-1,5-bisphosphate carboxylase (Rubisco) and Rubisco subunit-binding protein from pea leaves. FEBS Lett 289: 205–209 (1991).Google Scholar
  294. 295.
    Ursic D, Culbertson MR: The yeast homologue to mouse Tcp-1 affects microtubule-mediated processes. Mol Cell Biol 11: 2629–2640 (1991).Google Scholar
  295. 296.
    Van Berkel J, Salamini F, Gebhardt C: Transcripts accumulating during cold storage of potato (Solanum tuberosum L.) tubers are sequence related to stress-responsive genes. Plant Physiol 104: 445–452 (1994).Google Scholar
  296. 297.
    van der Vies SM, Gatenby AA, Georgopoulos C: Bacteriophage T4 encodes a co-chaperonin that can substitute for Escherichia coli GroES in protein folding. Nature 368: 654–656 (1994).Google Scholar
  297. 298.
    Viitanen PV, Gatenby AA, Lorimer GH: Purified chaperonin 60 (groEL) interacts with the nonnative states of a multitude of Escherichia coli proteins. Protein Sci 1: 363–369 (1992).Google Scholar
  298. 299.
    Viitanen PV, Lorimer GH, Seetharam R, Gupta RS, Oppenheim J, Thomas JO, Cowan NJ: Mammalian mitochondrial chaperonin 60 functions as a single toroidal ring. J Biol Chem 267: 695–698 (1992).Google Scholar
  299. 300.
    Viitanen PV, Lubben TH, Reed J, Goloubinoff P, O'Keefe DP, Lorimer GH: Chaperonin-Facilitated refolding of ribulosebisphosphate carboxylase and ATP hydrolysis by chaperonin 60 (groEL) are K+ dependent. Biochemistry 29: 5665–5671 (1990).Google Scholar
  300. 301.
    Viitanen PV, Schmidt M, Buchner J, Suzuki T, Vierling E, Dickson R, Lorimer GH, Gatenby A, Soll J: Functional characterization of the higher plant chloroplast chaperonins. J Biol Chem 270: 18158–18164 (1995).Google Scholar
  301. 302.
    Vinh DB-N, Drubin DG: A yeast TCP-1-like protein is required for actin function in vivo. Proc Natl Acad Sci USA 91: 9116–9120 (1994).Google Scholar
  302. 303.
    Vitale A, Bielli A, Ceriotti A: The binding protein associates with monomeric phaseolin. Plant Physiol 107: 1411–1418 (1996).Google Scholar
  303. 304.
    Vitale A, Ceriotti A, Denecke J: The role of the endoplasmic reticulum in protein synthesis, modification and intracellular transport. J Exp Bot 44: 1417–1444 (1993).Google Scholar
  304. 305.
    Vogel JL, Parsell DA, Lindquist S: Heat-shock proteins Hsp104 and Hsp70 reactivate mRNA splicing after heat inactivation. Curr Biol 5: 306–317 (1995).Google Scholar
  305. 306.
    Vogel JP, Misra LM, Rose MD: Loss of BiP/GRP78 function blocks translocation of secretory proteins in yeast. J Cell Biol 110: 1885–1895 (1990).Google Scholar
  306. 307.
    Von Stedingk EM, Glaser E: The molecular chaperone mhsp72 is partially associated with the inner mitochondrial membrane both in normal and heat stressed Spinacia oleracea. Biochem Mol Biol Int 35: 1307–1314 (1995).Google Scholar
  307. 308.
    Voordouw G, van der Vies SM, Bouwmeister PP: Dissociation of ribulose-1,5-bisphosphate carboxylased oxygenase from spinach by urea. Eur J Biochem 141: 313–318 (1984).Google Scholar
  308. 309.
    Waegemann K, Soll J: Characterization of the protein import apparatus in isolated outer envelopes of chloroplasts. Plant J 1: 149–158 (1991).Google Scholar
  309. 310.
    Waldmann T, Nimmesgern E, Nitsch M, Peters J, Pfeifer G, Müller S, Kellermann J, Engel A, Hartl F-U, Baumeister W: The thermosome of Thermoplasma acidophilum and its relationship to the eukaryotic chaperonin TRiC. Eur J Biochem 227: 848–856 (1995).Google Scholar
  310. 311.
    Walsh CT, Zydowsky LD, McKeon FD: Cyclosporin A, the cyclophilin class of peptidylprolyl isomerases, and blockade of T cell signal transduction. J Biol Chem 267: 13115–13118 (1992).Google Scholar
  311. 312.
    Walther-Larsen H, Brandt J, Collinge DB, Thordal-Christensen H: A pathogen-induced gene of barley encodes a HSP90 homologue showing striking similarity to vertebrate forms resident in the endoplasmic reticulum. Plant Mol Biol 21: 1097–1108 (1993).Google Scholar
  312. 313.
    Wang C, Lin B-L: The disappearance of an hsc70 species in mung bean seed during germination: purification and characterization of the protein. Plant Mol Biol 21: 317–329 (1993).Google Scholar
  313. 314.
    Wang H, Goffreda M, Leustek T: Characteristics of an Hsp70 homologue localized in higher plant chloroplasts that is similar to DnaK, the Hsp70 of prokaryotes. Plant Physiol 102: 843–850 (1993).Google Scholar
  314. 315.
    Wang S, Liu X-Q: The plastid genome of Cryptomonas Phi encodes an hsp70-like protein, a histone-like protein, and an acyl carrier protein. Proc Natl Acad Sci USA 88: 10783–10787 (1991).Google Scholar
  315. 316.
    Wang TF, Chang J, Wang C: Identification of the peptide binding domain of Hsc70. J Biol Chem 268: 26049–26051 (1993).Google Scholar
  316. 317.
    Waters E: The molecular evolution of the small heat shock proteins in plants. Genetics 141: 785–795 (1995).Google Scholar
  317. 318.
    Waters ER, Lee GJ, Vierling E: Evolution, structure and function of the small heat shock proteins in plants. J Exp Bot 47: 325–338 (1996).Google Scholar
  318. 319.
    Watts FZ, Walters AJ, Moore AL: Characterisation of PHSP1, a cDNA encoding a mitochondrial HSP70 from Pisum sativum. Plant Mol Biol 18: 23–32 (1992).Google Scholar
  319. 320.
    Wawrzynow A, Wojtkowiak D, Marszalek J, Banecki B, Jonsen M, Graves B, Georgopoulos C, Zylicz M: The ClpX heat-shock protein of Escherichia coli, the ATP-dependent substrate specificity component of the ClpP-ClpX protease, is a novel molecular chaperone. EMBO J 14: 1867–1877 (1995).Google Scholar
  320. 321.
    Weissman JS, Kashi Y, Fenton WA, Horwich AL: GroEL-mediated protein folding proceeds by multiple rounds of binding and release of nonnative forms. Cell 78: 693–702 (1994).Google Scholar
  321. 322.
    Wiest DL, Burgess WH, McKean D, Kearse KP, Singer A: The molecular chaperone calnexin is expressed on the surface of immature thymocytes in association with clonotype-independent CD3 complexes. EMBO J 14: 3425–3433 (1995).Google Scholar
  322. 323.
    Welch WJ, Feramisco JR: Rapid purification of mammalian 70,000-dalton stress proteins: affinity of the proteins for nucleotides. Mol Cell Biol 5: 1229–1237 (1985).Google Scholar
  323. 324.
    Weng J, Wang Z-F, Nguyen HT: Nucleotide sequence of a Triticum aestivum cDNA clone which is homologous to the 26 kDa chloroplast-localized heat shock protein gene of maize. Plant Mol Biol 17: 255–258 (1991).Google Scholar
  324. 325.
    Whitesell L, Mimnaugh EG, De Costa B, Myers CE, Neckers LM: Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc Natl Acad Sci USA 91: 8324–8328 (1994).Google Scholar
  325. 326.
    Wiech H, Buchner J, Zimmermann R, Jakob U: Hsp90 chaperones protein folding in vitro. Nature 358: 169–170 (1992).Google Scholar
  326. 327.
    Wilbanks SM, DeLuca-Flaherty C, McKay DB: Structural basis of the 70-kilodalton heat shock cognate protein ATP hydrolytic activity. J Biol Chem 269: 12893–12898 (1994).Google Scholar
  327. 328.
    Williams DB: Calnexin: a molecular chaperone with a taste for carbohydrate. Biochem Cell Biol 73: 123–132 (1995).Google Scholar
  328. 329.
    Willison KR, Kubota H: The structure, function, and genetics of the chaperonin containing TCP-1 (CCT) in eukaryotic cytosol. In: Morimoto RI, Tissières A, Georgopoulos C (eds) The Biology of Heat Shock Proteins and Molecular Chaperones, pp. 299–312. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1994).Google Scholar
  329. 330.
    Winter J, Wright R, Duck N, Gasser C, Fraley R, Shah D: The inhibition of petunia hsp70 mRNA processing during CdCl2 stress. Mol Gen Genet 211: 215–319 (1988).Google Scholar
  330. 331.
    Wojtkowiak D, Georgopoulos C, Zylicz M: Isolation and characterization of ClpX, a new ATP-dependent specificity component of the Clp protease of Escherichia coli. J Biol Chem 268: 22609–22617 (1993).Google Scholar
  331. 332.
    Wolfe KH, Morden CW, Palmer JD: Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant. Proc Natl Acad Sci USA 89: 10648–10652 (1992).Google Scholar
  332. 333.
    Woo KM, Kim KI, Goldberg AL, Ha DB, Chung CH: The heat-shock protein ClpB in Escherichia coli is a protein-activated ATPase. J Biol Chem 267: 20429–20434 (1992).Google Scholar
  333. 334.
    Wu CH, Casper T, Browse J, Lindquist S, Somerville C: Characterization of an HSP70 cognate gene family in Arabidopsis. Plant Physiol 88: 731–740 (1988).Google Scholar
  334. 335.
    Xu Y, Lindquist S: Heat-shock protein hsp90 governs the activity of pp60 V-STCkinase. Proc Natl Acad Sci USA 90: 7074–7078 (1993).Google Scholar
  335. 336.
    Yabe N, Takahashi T, Komeda Y: Analysis of tissue-specific expression of Arabidopsis thaliana HSP90-family gene HSP81. Plant Cell Physiol 35: 1207–1219 (1994).Google Scholar
  336. 337.
    Yaffe MB, Farr GW, Miklos D, Horwich AL, Sternlicht ML, Sternlicht H: TCP1 complex is a molecular chaperone in tubulin biogenesis. Nature 358: 245–248 (1992).Google Scholar
  337. 338.
    Yalovsky S, Paulsen H, Michaeli D, Chitnis PR, Nechushtai R: Involvement of a chloroplast HSP70 heat shock protein in the integration of a protein (light-harvesting complex protein precursor) into the thylakoid membrane. Proc Natl Acad Sci USA 89: 5616–5619 (1992).Google Scholar
  338. 339.
    Yuan J, Henry R, Cline K: Stromal factor plays an essential role in protein integration into thylakoids that cannot be replaced by unfolding or by heat shock protein Hsp70. Proc Natl Acad Sci USA 90: 8552–8556 (1993).Google Scholar
  339. 340.
    Zabaleta E, Oropeza A, Assad N, Mandel A, Salerno G, Herrera-Estrella L: Antisense expression of chaperonin 60β in transgenic tobacco plants leads to abnormal phenotypes and altered distribution of photoassimilates. Plant J 6: 425–432 (1994).Google Scholar
  340. 341.
    Zhang F, Boston RS: Increases in binding protein (BiP) accompany changes in protein body morphology in three high lysine mutants of maize. Protoplasma 171: 142–152 (1992).Google Scholar
  341. 342.
    Zhou R, Kroczynska B, Hayman GT, Miernyk JA: AtJ2, an arabidopsis homologue of Escherichia coli dnaJ. Plant Physiol 108: 821–822 (1995).Google Scholar
  342. 343.
    Zhou R, Miernyk JA: ATPase activities of the maize stress70 molecular chaperone proteins. J Biol Chem, in press (1996).Google Scholar
  343. 344.
    Zhu J-K, Shi J, Bressan RA, Hasegawa PM: Expression of an Atriplex nummularia gene encoding a protein homologous to the bacterial molecular chaperone. DnaJ. Plant Cell 5: 341–349 (1993).Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Rebecca S. Boston
    • 1
  • Paul V. Viitanen
    • 2
  • Elizabeth Vierling
    • 3
  1. 1.Department of BotanyNorth Carolina State UniversityRaleighUSA
  2. 2.Molecular Biology Division, Central Research and Development DepartmentE.I. DuPont de Nemours and Company, Experimental StationWilmingtonUSA
  3. 3.Department of BiochemistryUniversity of ArizonaTucsonUSA

Personalised recommendations