Plant Molecular Biology

, Volume 32, Issue 1–2, pp 107–144

The plant translational apparatus

  • Karen S. Browning
Transiation

Abstract

Protein synthesis in both eukaryotic and prokaryotic cells is a complex process requiring a large number of macromolecules: initiation factors, elongation factors, termination factors, ribosomes, mRNA, amino-acylsynthetases and tRNAs. This review focuses on our current knowledge of protein synthesis in higher plants.

Key words

Protein synthesis initiation factors elongation factors ribosomes plants translation 

Abbreviations

eIF

eukaryotic initiation factor

eEF

eukaryotic elongation factor

EST

expressed sequence tag

eRF

eukaryotic release factor

GUS

β-glucoronidase

HCR

heme-controlled repressor

PKR

double-stranded

RNA

activated protein kinase

SDS-PAGE

sodium dodecyl sulfate polyacrylamide gel electrophoresis

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramson RD, Browning KS, Dever TE, Lawson TG, Thach RE, Ravel JM, Merrick WC: Initiation factors that bind mRNA. A comparison of mammalian factors with wheat germ factors. J Biol Chem 263: 5462–5467 (1988).Google Scholar
  2. 2.
    Adams MD, Kelley JM, Gocayne JD, Dubnick M, Polymeropoulos MH, Xiao H, Merril CR, Wu A, Olde B, Moreno RF, Kerlavage AR, McCombie WR, Venter JC: Complementary DNA sequencing: expressed sequence tags and human genome project. Science 252: 1651–1656 (1991).Google Scholar
  3. 3.
    Aguilar F, Montandon P-E, Stuz EE: Two genes encoding the soybean translation elongation factor eEF-1α are transcribed in seedling leaves. Plant Mol Biol 17: 351–360 (1991).Google Scholar
  4. 4.
    Allen ML, Metz AM, Timmer RT, Rhoads RE, Browning KS: Isolation and sequence of the cDNAs encoding the subunits of the isozyme form of wheat protein synthesis initiation factor 4F. J Biol Chem 267: 23232–23236 (1992).Google Scholar
  5. 5.
    Altmann M, Handschin C, Trachsel H: mRNA cap-binding protein: cloning of the gene encoding protein synthesis initiation factor eIF-4E from Saccharomyces cerevisiae. Mol Cell Biol 7: 998–1003 (1987).Google Scholar
  6. 6.
    Altmann M, Müller PP, Wittmer B, Ruchti F, Lanker S, Trachsel H: A Saccharomyces cerevisiae homologue of mammalian translation initiation factor 4B contributes to RNA helicare activity. EMBO J 12: 3997–4003 (1993).Google Scholar
  7. 7.
    Altmann M, Trachsel H: The yeast Saccharomyces cerevisiae system: a powerful tool to study the mechanism of protein synthesis initiation in eukaryotes. Biochimie 76: 853–861 (1991).Google Scholar
  8. 8.
    Altmann M, Wittmer B, Méthot N, Sonenberg N, Trachsei H: The Saccharomyces cerevisiae translation initiation factor Tif3 and its mammalian homologue, eIF-4B, have RNA annealing activity. EMBO J 14: 3820–3827 (1995).Google Scholar
  9. 9.
    Amons R, Guerrucci M-A, Karssies RH, Morales J, Cormier P, Möller W, Bellé R: The leucine-zipper in elongation factor EF-1δ, a guanine-nucleotide exchange protein, is conserved in Artemia and Xenopus. Biochim Biophys Acta 1218: 346–350 (1994).Google Scholar
  10. 10.
    Andersson S, Saeboe-Larssen S, Lambertsson A, Merriam J, Jacobs-Lorena M: A Drosophila third chromosome Minute locus encodes a ribosomal protein. Genetics 137: 513–520 (1994).Google Scholar
  11. 11.
    Axelos M, Bardet C, Liboz T, LeVan Thai A, Curie C, Lescure B: The gene family encoding the Arabidopsis thaliana translation elongation factor EF-1α: Molecular cloning, characterization and expression. Mol Gen Genet 219: 106–112 (1989).Google Scholar
  12. 12.
    Bailey-Serres J, Freeling M: Hypoxic stress-induced changes in ribosomes of maize seedling roots. Plant Physiol 94: 1237–1243 (1990).Google Scholar
  13. 13.
    Balasta ML, Carberry SE, Friedland DE, Perez RA, Goss DJ: Characterization of the ATP-dependent binding of wheat germ protein synthesis initiation factors eIF-(iso)4F and eIF-4A to mRNA. J Biol Chem 268: 18599–18603 (1993).Google Scholar
  14. 14.
    Ballestra JPG, Remacha M, Naranda T, Santos C, Bermejo B, Jimenez-Diaz A, Ortiz-Reyes B. The acidic ribosomal proteins and the control of protein synthesis in yeasts. In: Brown AJP, Tuite MF, McCarthy JEG (eds) Protein Synthesis and Targeting in Yeast, pp. 67–80 Springer-Verlag, Berlin (1993).Google Scholar
  15. 15.
    Barbieri L, Battelli MG, Stirpe F: Ribosome-inactivating proteins from plants. Biochim Biophys Acta 1154: 237–282 (1993).Google Scholar
  16. 16.
    Bassell GJ: High resolution distribution of mRNA within the cytoskeleton. J Cell Biochem 52: 127–133 (1993).Google Scholar
  17. 17.
    Bektas M, Nurten R, Gürel Z, Sayers Z, Bermek E: Interactions of eukaryotic elongation factor 2 with actin: a possible link between protein synthetic machinery and cytoskeleton. FEBS Lett 356: 89–93 (1994).Google Scholar
  18. 18.
    Beltrán-Peña E, Ortíz-López A, Sánchezde Jiménez E: Synthesis of ribosomal proteins from stored mRNAs early in seed germination. Plant Mol Biol 28: 327–336 (1995).Google Scholar
  19. 19.
    Benkowski LA: Elements That Regulate the Translational Efficiency of mRNA. Ph.D. Dissertation, University of Texas at Austin (1993).Google Scholar
  20. 20.
    Benkowski LA, Ravel JM, Browning KS: mRNA binding properties of wheat germ protein synthesis initiation factor 2. Biochem Biophys Res Commun 214: 1033–1039 (1995).Google Scholar
  21. 21.
    Benne R, Hershey JWB: The mechanism of action of protein synthesis initiation factors from rabbit reticulocytes. J Biol Chem 253: 3078–3087 (1978).Google Scholar
  22. 22.
    Benne R, Kasperaitis M, Voorma HO, Ceglarz E, Legocki AB: Initiation factor eIF-2 from wheat germ: purification, functional comparison to eIF-2 from rabbit reticulocytes and phosphorylation of its subunits. Eur J Biochem 104: 109–117 (1980).Google Scholar
  23. 22a.
    Berberich T, Sugawara K, Harada M, Kusano T: Molecular cloning, characterization and expression of an elongation factor 1α gene in maize. Plant Mol. Biol. 29: 611–615 (1995).Google Scholar
  24. 23.
    Bevec D, Klier H, Holter W, Tschachler E, Valent P, Lottspeich F, Baumruker T, Hauber J: Induced gene expression of the hypusine-containing protein eukaryotic initiation factor 5A in activated human T lymphocytes. Proc Natl Acad Sci USA 91: 10829–10833 (1994).Google Scholar
  25. 24.
    Bodley JW: Does diphtheria toxin have nuclease activity? Science 250: 832 (1990).Google Scholar
  26. 25.
    Bodley JW, Veldman SA: ADP-ribosylating toxins and G proteins. In: Moss J, Vaughan M (eds) Insights into Signal Transduction, pp. 21–30. American Society for Microbiology, Washington, D.C. (1990).Google Scholar
  27. 26.
    Bokros CL, Hugdahl JD, Kim HH, Hanesworth VR, Van Heerden A, Browning KS, Morejohn LC: Function of the p86 subunit of eukaryotic initiation factor (iso)4F as a microtubule-associated protein in plant cells. Proc Natl Acad Sci USA 92: 7120–7124 (1995).Google Scholar
  28. 27.
    Bollini R, Soffientini AN, Bertani A, Lanzani GA: Some molecular properties of the elongation factor EF1 from wheat embryos. Biochemistry 13: 5421–5425 (1974).Google Scholar
  29. 28.
    Bonham-Smith PC, Moloney MM: Nucleotide and protein sequences of a cytoplasmic ribosomal protein S15a gene from Arabidopsis thaliana. Plant Physiol 106: 401–402 (1994).Google Scholar
  30. 29.
    Bonham-Smith PC, Oancia TL, Moloney MM. Cytoplasmic ribosomal protein S15a from Brassica napus: molecular cloning and developmental expression in mitotically active tissues. Plant Mol Biol 18: 909–919 (1992).Google Scholar
  31. 30.
    Bourne HR, Sanders DA, McCormick F: The GTPase superfamily: conserved structure and molecular mechanism. Nature 349: 117–126 (1991).Google Scholar
  32. 31.
    Brander KA, Kuhlemeier C: A pollen-specific DEAD-box protein related to translation initiation factor eIF-4A from tobacco. Plant Mol Biol 27: 637–649 (1995).Google Scholar
  33. 32.
    Brander KA, Mandel T, Owttrim GW, Kuhlemeier C: Highly conserved genes coding for eukaryotic translation initiation factor eIF-4A of tobacco have specific alterations in functional motifs. Biochim Biophys Acta 1261: 442–444 (1995).Google Scholar
  34. 33.
    Braun HP, Emmermann M, Mentzel H, Schmitz UK: Primary structure and expression of a gene encoding the cytosolic ribosomal protein S4 from potaco. Biochim Biophys Acta 1218: 435–438 (1994).Google Scholar
  35. 34.
    Browning KS, Fletcher L, Lax SR, Ravel JM: Evidence that the 59-kDa protein synthesis initiation factor from wheat germ is functionally similar to the 80-kDa initiation factor 4B from mammalian cells. J Biol Chem 264: 8491–8494 (1989).Google Scholar
  36. 35.
    Browning KS, Fletcher L, Ravel JM: Evidence that the requirements for ATP and wheat germ initiation factors 4A and 4F are affected by a region of satellite tobacco necrosis virus RNA that is 3′ to the ribosomal binding site. J Biol Chem 263: 8380–8383 (1988).Google Scholar
  37. 36.
    Browning KS, Humphreys J, Hobbs W, Smith GB, Ravel JM: Determination of the amounts of the protein synthesis initiation and elongation factors in wheat germ. J Biol Chem 265: 17967–17973 (1990).Google Scholar
  38. 37.
    Browning KS, Lax SR, Humphreys J, Ravel JM, Jobling SA, Gehrke L: Evidence that the 5′-untranslated leader of mRNA affects the requirement for wheat germ initiation factors 4A, 4F and 4G. J Biol Chem 263: 9630–9634 (1988).Google Scholar
  39. 38.
    Browning KS, Lax SR, Ravel JM: Identification of two messenger RNA cap binding proteins in wheat germ. Evidence that the 28-kDa subunit of eIF-4B and the 26-kDa subunit of eIF-4F are antigenically distinct polypeptides. J Biol Chem 262: 11228–11232 (1987).Google Scholar
  40. 39.
    Browning KS, Maia DM, Lax SR, Ravel JM: Identification of a new protein synthesis initiation factor from wheat germ. J Biol Chem 262: 538–541 (1987).Google Scholar
  41. 40.
    Browning KS, Webster C, Roberts JKM, Ravel JM: Identification of an isozyme form of protein synthesis initiation factor 4F in plants. J Biol Chem 267: 10096–10100 (1992).Google Scholar
  42. 41.
    Browning KS, Yan TFJ, Lauer SJ, Aquino LA, Tao M, Ravel JM: Phosphorylation of wheat germ initiation factors and ribosomal proteins. Plant Physiol 77: 370–373 (1985).Google Scholar
  43. 42.
    Butler JS, Clark JMJr: Eucaryotic initiation factor 4B of wheat germ binds to the translation initiation region of a messenger ribonucleic acid. Biochemistry 23: 809–815 (1984).Google Scholar
  44. 43.
    Cammarano P, Felsani A, Gentile M, Gualerzi C, Romeo A, Wolf G: Formation of active hybrid 80-S particles from subunits of pea seedlings and mammalian liver ribosomes. Biochim Biophys Acta 281: 625–642 (1972).Google Scholar
  45. 44.
    Cammarano P, Pons S, Romeo A, Galdieri M, Gualerzi C: Characterization of unfolded and compact ribosomal subunits from plants and their relationship to those of lower and higher animals: evidence for physicochemical heterogeneity among eucaryotic ribosomes. Biochim Biophys Acta 281: 571–596 (1972).Google Scholar
  46. 45.
    Cammarano P, Romeo A, Gentile M, Felsani A, Gualerzi C. Size heterogeneity of the large ribosomal subunits and conservation of the small subunits in eucaryote evolution. Biochim Biophys Acta 281: 597–624 (1972).Google Scholar
  47. 46.
    Campbell LH, Borg KT, Haines JK, Moon RT, Schoenberg DR, Arrigo SJ: Human immunodeficiency virus type 1 Rev is required in vivo for binding of poly(A)-binding protein to Rev-dependent RNAs. J Virol 68: 5433–5438 (1994).Google Scholar
  48. 47.
    Carberry SE, Darzynkiewicz E, Goss DJ: A comparison of the binding of methylated cap analogues to wheat germ protein synthesis initiation factors 4F and (iso)4F. Biochemistry 30: 1624–1627 (1991).Google Scholar
  49. 48.
    Carberry SE, Goss DJ: Interaction of wheat germ protein synthesis initiation factors eIF-3, eIF-(iso)4F, and eIF-4F with mRNA analogues. Biochemistry 30: 6977–6982 (1991).Google Scholar
  50. 49.
    Carberry SE, Goss DJ: Wheat germ initiation factors 4F and (iso)4F interact differently with oligoribonucleotide analogues of rabbit α-globin mRNA. Biochemistry 30: 4542–4545 (1991).Google Scholar
  51. 50.
    Carberry SE, Goss DJ: Characterization of the interaction of wheat germ protein synthesis initiation factor eIF-3 with mRNA oligonucleotide and cap analogues. Biochemistry 31: 296–299 (1992).Google Scholar
  52. 51.
    Carvalho JF, Carvalho M, Merrick WC: Purification of various forms of elongation factor 1 from rabbit reticulocytes. Arch Biochem Biophys 234: 591–602 (1984).Google Scholar
  53. 52.
    Caskey CT: Peptide chain termination. Trends Biochem Sci 5: 234–237 (1980).Google Scholar
  54. 53.
    Cavallius J, Zoll W, Chakraburtty K, Merrick WC: Characterization of yeast EF-1α: non-conservation of post-translational modifications. Biochim Biophys Acta 1163: 75–80 (1993).Google Scholar
  55. 54.
    Ceglarz E, Goumans H, Thomas A, Benne R: Purification and characterization of protein synthesis initiation factor eIF-3 from wheat germ. Biochim Biophys Acta 610: 181–188 (1980).Google Scholar
  56. 55.
    Chakrabarti A, Maitra U: Function of eukaryotic initiation factor 5 in the formation of an 80 S ribosomal polypeptide chain initiation complex. J Biol Chem 266: 14039–14045 (1991).Google Scholar
  57. 56.
    Chakravarti D, Maitra U: Eukaryotic translation initiation factor 5 from Saccharomyces cerevisiae. Cloning, characterization, and expression of the gene encoding the 45,346-Da protein. J Biol Chem 268: 10524–10533 (1993).Google Scholar
  58. 57.
    Chamot D, Kuhlemeier C: Differential expression of genes encoding the hypusine-containing translation initiation factor, eIF-5A, in tobacco. Nucl Acids Res 20: 665–669 (1992).Google Scholar
  59. 58.
    Chaudhry B, Muller-Uri F, Cameron-Mills V, Gough S, Simpson D, Skriver K, Mundy J: The barley 60 kDa jasmonate-induced protein (JIP60) is a novel ribosome-inactivating protein. Plant Journal 6: 815–824 (1994).Google Scholar
  60. 59.
    Chaudhuri J, Das K, Maitra U: Purification and characterization of bacterially expressed mammalian translation initiation factor 5 (eIF-5): demonstration that eIF-5 forms a specific complex with eIF-2. Biochemistry 33: 4794–4799 (1994).Google Scholar
  61. 60.
    Checkley JW, Cooley LL, Ravel JM: Characterization of initiation factor eIF-3 from wheat germ. J Biol Chem 256: 1582–1586 (1981).Google Scholar
  62. 61.
    Chen J-J, London IM: Regulation of protein synthesis by heme-regulated eIF-2α kinase. Trends Biochem Sci 20: 105–108 (1995).Google Scholar
  63. 62.
    Chen JY, Bodley JW: Biosynthesis of diphthamide in Saccharomyces cerevisiae. Partial purification and characterization of a specific S-adenosylmethionine: elongation factor 2 methyltransferase. J Biol Chem 263: 11692–11696 (1988).Google Scholar
  64. 63.
    Chen JY, Bodley JW, Livingston DM: Diphtheria toxinresistant mutants of Saccharomyces cerevisiae. Mol Cell Biol 5: 3357–3360 (1985).Google Scholar
  65. 64.
    Chevesich J, Chaudhuri J, Maitra U: Characterization of mammalian translation initiation factor 5 (eIF-5). Demonstration that eIF-5 is a phosphoprotein and is present in cells as a single molecular form of apparent M r58,000. J Biol Chem 268: 20659–20667 (1993).Google Scholar
  66. 65.
    Cho S, Mitchell A, Regier JC, Mitter C, Poole RW, Friedlander TP, Zhao S: A highly conserved nuclear gene for low-level phylogenetics: elongation factor-1α recovers morphology-based tree for heliothine moths. Mol Biol Evol 12: 650–656 (1995).Google Scholar
  67. 66.
    Clarke RD, Ranu RS: Characterization of wheat germ initiation factor eIF-2. Mol Cell Biochem 74: 129–135 (1987).Google Scholar
  68. 67.
    Clemens MJ: Regulation of eukaryotic protein synthesis by protein kinases that phosphorylate initiation factor eIF-2. Plant Mol Biol Rep 19: 201–210 (1994).Google Scholar
  69. 68.
    Condeelis J: Elongation factor 1α, translation and the cytoskeleton. Trends Biochem Sci 20: 169–170 (1995).Google Scholar
  70. 69.
    Coppolecchia R, Buser P, Stotz A, Linder P: A new yeast translation initiation factor suppresses a mutation in the eIF-4A RNA helicase. EMBO J 12: 4005–4011 (1993).Google Scholar
  71. 70.
    Curie C, Axelos M, Bardet C, Atanassova R, Chaubet N, Lescure B: Modular organization and developmental activity of an Arabidopsis thaliana EF-1α gene promoter. Mol Gen Genet 238: 428–436 (1993).Google Scholar
  72. 71.
    Curie C, Liboz T, Bardet C, Gander E, Médale C, Axelos M, Lescure B: Cis and trans-acting elements involved in the activation of Arabidopsis thaliana A1 gene encoding the translation elongation factor EF-1α. Nucl Acids Res 19: 1305–1310 (1991).Google Scholar
  73. 72.
    Curie C, Liboz T, Montané M-H, Rouan D, Axelos M, Lescure B: The activation process of Arabidopsis thaliana A1 gene encoding the translation elongation factor EF-1α is conserved among angiosperms. Plant Mol Biol 18: 1083–1089 (1992).Google Scholar
  74. 73.
    Curtis D, Lehmann R, Zamore PD: Translational regulation in development. Cell 81: 171–178 (1995).Google Scholar
  75. 74.
    Das K, Chevesich J, Maitra U: Molecular cloning and expression of cDNA for mammalian translation initiation factor 5. Proc Natl Acad Sci USA 90: 3058–3062 (1993).Google Scholar
  76. 75.
    Datta N, LaFayette PR, Kroner PA, Nagao RT, Key JL: Isolation and characterization of three families of auxin down-regulated cDNA clones. Plant Mol Biol 21: 859–869 (1993).Google Scholar
  77. 76.
    Davies E, Comer EC, Lionberger JM, Stankovic B, Abe S: Cytoskeleton-bound polysomes in plants. III. Polysome-cytoskeleton-membrane interactions in corn endosperm. Cell Biol Int 17: 331–340 (1993).Google Scholar
  78. 77.
    Davies E, Fillingham BD, Oto Y, Abe S: Evidence for the existence of cytoskeleton-bound polysomes in plants. Cell Biol Int 15: 973–981 (1991).Google Scholar
  79. 78.
    De Benedetti A, Rhoads RE: Overexpression of eukaryotic protein synthesis initiation factor 4E in HeLa cells results in aberrant growth and morphology. Proc Natl Acad Sci USA 87: 8212–8216 (1990).Google Scholar
  80. 79.
    De Pater BS, Van der Mark F, Rueb S, Katagiri F, Chua NH, Schilperoort RA, Hensgens LA: The promoter of the rice gene GOS2 is active in various different monocot tissues and binds rice nuclear factor ASF-1. Plant J 2: 837–844 (1992).Google Scholar
  81. 80.
    Dever TE, Costello CE, Owens CL, Rosenberry TL, Merrick WC: Location of seven post-translational modifications in rabbit elongation factor 1α including dimethyllysine, trimethyllysine, and glycerylphosphorylethanolamine. J Biol Chem 264: 20518–20525 (1989).Google Scholar
  82. 81.
    Dever TE, Wei C-L, Benkowski LA, Browning K, Merrick WC, Hershey JWB: Determination of the amino acid sequence of rabbit, human, and wheat germ protein synthesis factor eIF-4C by cloning and chemical sequencing. J Biol Chem 269: 3212–3218 (1994).Google Scholar
  83. 82.
    Dunn MA, Morris A, Jack PL, Hughes MA: A low-temperature-responsive translation elongation factor 1α from barley (Hordeum vulgare L.). Plant Mol Biol 23: 221–225 (1993).Google Scholar
  84. 83.
    Durso NA, Cyr RJ: A calmodulin-sensitive interaction between microtubles and a higher plant homolog of elongation factor-1α. Plant Cell 6: 893–905 (1994).Google Scholar
  85. 84.
    Ejiri S. Purification and characterization of polypeptide chain elongation factor 1 from plants. Meth Enzymol 118: 140–153 (1986).Google Scholar
  86. 85.
    Ejiri S, Ebata N, Kawamura R, Katsumata R: Occurance of four subunits in high molecular weight forms of polypeptide chaing elongation factor 1 from wheat embryo. J Biochem (Tokyo) 94: 319–322 (1983).Google Scholar
  87. 86.
    Ejiri S, Honda H: Effect of cyclic AMP and cyclic GMP on the autophosphorylation of elongation factor 1 from wheat embryos. Biochem Biophys Res Commun 128: 53–60 (1985).Google Scholar
  88. 87.
    Ejiri S, Kawamura R, Katsumata T: Interactions among four subunits of elongation factor 1 from rice embryo. Biochim Biophys Acta 1217: 266–272 (1994).Google Scholar
  89. 88.
    Etchison D, Milburn S: Separation of protein synthesis initiation factor eIF-4A from a p220-associated cap binding complex activity. Mol Cell Biol 76: 15–25 (1987).Google Scholar
  90. 89.
    Eustice DC, Wakem LP, Wilhelm JM, Sherman F: Altered 40 S ribosomal subunits in omnipotent suppressors of yeast. J Mol Biol 188: 207–214 (1986).Google Scholar
  91. 90.
    Fehling E, Weidner M: Temperature characteristics and adaptive potential of wheat ribosomes. Plant Physiol 80: 181–186 (1986).Google Scholar
  92. 91.
    Fehling E, Weidner M: Adaptive potential of wheat ribosomes toward heat depends on the large ribosomal subunit and ribosomal protein phosphorylation. Plant Physiol 87: 562–565 (1988).Google Scholar
  93. 92.
    Fey EG, Ornelles DA, Penman S: Association of RNA with the cytoskeleton and the nuclear matrix. J Cell Sci 5: 99–119 (1986).Google Scholar
  94. 93.
    Fleming AJ, Mandel T, Roth I, Kuhlemeier C: The patterns of gene expression in the tomato shoot apical meristem. Plant Cell 5: 297–309 (1993).Google Scholar
  95. 93a.
    Floyd B, Bartlett SG. Nucleotide sequence of a cDNA encoding eucaryotic initiation factor 5 in bean. Plant Physiol 109: 1126 (1995).Google Scholar
  96. 94.
    Flynn A, Shatsky IN, Proud CG, Kaminski A: The RNA-binding properties of protein synthesis initiation factor eIF-2. Biochim Biophys Acta 1219: 293–301 (1994).Google Scholar
  97. 95.
    Frolova L, Le Goff X, Rasmussen HH, Cheperegin S, Drugeon G, Kress M, Arman I, Haenni A-L, Celis JE, Philippe M, Justesen J, Kisselev L. A highly conserved eukaryotic protein family possessing properties of polypeptide chain release factor. Nature 372: 701–703 (1994).Google Scholar
  98. 96.
    Fujiwara Y, Komiya T, Kawabata H, Sato M, Fujimoto H, Furusawa M, Noce T: Isolation of a DEAD-family protein gene that encodes a murine homolog of Drosophila vasa and its specific expression in germ cell lineage. Proc Natl Acad Sci USA 91: 12258–12262 (1994).Google Scholar
  99. 97.
    Gallie DR, Tanguay R: Poly(A) binds to initiation factors and increases cap-dependent translation in vitro. J Biol Chem 269: 17166–17173 (1994).Google Scholar
  100. 98.
    Gantt JS, Key JL: Auxin-induced changes in the level of translatable ribosomal protein messenger ribonucleic acids in soybean hypocotyl. Biochemistry 22: 4131–4139 (1983).Google Scholar
  101. 99.
    Gantt JS, Key JL: Coordinate expression of ribosomal protein mRNAs following auxin treatment of soybean hypocotyls. J Biol Chem 260: 6175–6181 (1985).Google Scholar
  102. 100.
    Gantt JS, Thompson MD: Plant cytosolic ribosomal protein S11 and chloroplast ribosomal protein CS17. Their primary structures and evolutionary relationships. J Biol Chem 265: 2763–2767 (1990).Google Scholar
  103. 101.
    Gao J, Kim SR, Chung YY, Lee JM, An G: Developmental and environmental regulation of two ribosomal protein genes in tobacco. Plant Mol Biol 25: 761–770 (1994).Google Scholar
  104. 102.
    Gao J, Kim SR, Lee JM, An G: Nucleotide and protein sequences of 60S ribosomal protein L17 from tobacco (Nicotiana tabacum L.). Plant Physiol 103: 1027–1028 (1993).Google Scholar
  105. 103.
    Garcia-Barrio MT, Naranda T, Vazquezde Aldana CR, Cuesta R, Hinnebusch AG, Hershey JWB, Tamame M: GCD10, a translational repressor of GCN4, is the RNA-binding subunit of eukaryotic translation initiation factor-3. Genes Devel 9: 1781–1796 (1995).Google Scholar
  106. 104.
    Garcia-Hernandez M, Davies E, Staswick PE: Arabidopsis p40 homologue. A novel acidic protein associated with the 40S subunit of ribosomes. J Biol Chem 269: 20744–20749 (1994).Google Scholar
  107. 105.
    Gidekel M, Jiminez B, Herrera-Estrella L: Isolation and characterization of an elongation factor-1β gene from Arabidopsis thaliana. GenBank X74733-X74734 (1993).Google Scholar
  108. 106.
    Golinska B, Legocki AB: Purification and some properties of elongation factor 1 from wheat germ. Biochim Biophys Acta 324: 156–170 (1973).Google Scholar
  109. 107.
    Goyer C, Altmann M, Lee HS, Blanc A, Deshmukh M, Woolford JLJr, Trachsel H, Sonenberg N: TIF4631 and TIF4632: two yeast genes encoding the high-molecular-weight subunits of the cap-binding protein complex (eukaryotic initiation factor 4F) contain an RNA recognition motif-like sequence and carry out an essential function. Mol Cell Biol 13: 4860–4874 (1993).Google Scholar
  110. 108.
    Grifo JA, Tahara SM, Morgan MA, Shatkin AJ, Merrick WC: New initiation factor activity required for globin mRNA translation. J Biol Chem 258: 5804–5810 (1983).Google Scholar
  111. 109.
    Gualerzi C, Janda HG, Passow H, Stoffler G: Studies on the protein moiety of plant ribosomes. J Biol Chem 249: 3347–3355 (1974).Google Scholar
  112. 110.
    Habben JE, Moro GL, Hunter BG, Hamaker BR, Larkins BA: Elongation factor 1α is highly correlated with the lysine content of maize endosperm. Proc Natl Acad Sci USA 92: 8640–8644 (1995).Google Scholar
  113. 111.
    Hanauske-Abel HM, Park MH, Hanauske AR, Popowicz AM, Lalande M, Folk JE: Inhibition of the G1-S transition of the cell cycle by inhibitors of deoxyhypusine hydroxylation. Biochim Biophys Acta 1221: 115–124 (1994).Google Scholar
  114. 112.
    Hanauske-Abel HM, Slowinska B, Zagulska S, Wilson RC, Staiano-Coico L, Hanauske A-R, McCaffrey T, Szabo P: Detection of a sub-set of polysomal mRNAs associated with modulation of hypusine formation at the G1-S boundary: proposal of a role for eIF-5A in onset of DNA replication. FEBS Lett 366: 92–98 (1995).Google Scholar
  115. 113.
    Hansen G, Estruch JJ, Spena A: Tobacco cDNA encoding the ribosomal protein S6. Nucl Acids Res 20: 5230 (1992).Google Scholar
  116. 114.
    Harris EH, Boynton JE, Gillham NW: Chloroplast ribosomes and protein synthesis. Microbiol Rev 58: 700–754 (1994).Google Scholar
  117. 115.
    Hasezawa S, Nagata T: Microtubule organizing centers in plant cells: localization of a 49 kDa protein that is immunologically cross-reactive to a 51 kDa protein from sea urchin centrosomes in synchronized tobacco BY-2 cells. Protoplasma 176: 64–74 (1993).Google Scholar
  118. 116.
    Hay B, Jan LY, Jan YN: A protein component of Drosophila polar granules is encoded by vasa and has extensive sequence similarity to ATP-dependent helicases. Cell 55: 577–587 (1988).Google Scholar
  119. 117.
    Hernández G, Sierra JM: Translation initiation factor eIF-4E from Drosophila: cDNA sequence and expression of the gene. Biochim Biophys Acta 1261: 427–431 (1995).Google Scholar
  120. 118.
    Hershey JWB: Overview: phosphorylation and translation control. Enzyme 44: 17–27 (1990).Google Scholar
  121. 119.
    Hershey JWB: Translational control in mammalian cells. Annu Rev Biochem 60: 717–755 (1991).Google Scholar
  122. 120.
    Hershey JWB: Expression of initiation factor genes in mammalian cells. Biochimie 76: 847–852 (1994).Google Scholar
  123. 121.
    Hesketh JE, Pryme IF: Interaction between mRNA, ribosomes and the cytoskeleton. Biochem J 277: 1–10 (1991).Google Scholar
  124. 122.
    Heufler C, Browning KS, Ravel JM: Properties of the subunits of wheat germ initiation factor 3. Biochim Biophys Acta 951: 182–190 (1988).Google Scholar
  125. 123.
    Hihara Y, Umeda M, Hara C, Toriyama K, Uchimiya H: Nucleotide sequence of a rice acidic ribosomal phosphoprotein P0 cDNA. Plant Physiol 105: 753–754 (1994).Google Scholar
  126. 124.
    Himmelfarb HJ, Maicas E, Friesen JD: Isolation of the SUP45 omnipotent suppressor gene of Saccharomyces cerevisiae and characterization of its gene product. Mol Cell Biol 5: 816–822 (1985).Google Scholar
  127. 125.
    Hinnebusch AG: Translational control of GCN4: An in vivo barometer of initiation-factor activity. Trends Biochem Sci 19: 409–414 (1994).Google Scholar
  128. 126.
    Howe JG, Hershey JWB: Translation initiation factor and ribosome association with the cytoskeletal framework fraction of HeLa cells. Cell 37: 85–93 (1984).Google Scholar
  129. 127.
    Hugdahl JD, Bokros CL, Morejohn LC: End-to-end annealing of plant microtubules by the p86 subunit of eukaryotic initiation factor-(iso)4F. Plant Cell 7: 2129–2138 (1995).Google Scholar
  130. 128.
    Humphreys J, Browning KS, Ravel JM: Identification of a kinase in wheat germ that phosphorylates the large subunit of initiati on factor 4F. Plant Physiol 88: 483–486 (1988).Google Scholar
  131. 129.
    Huttly AK, Phillips AL: Gibberellin-regulated expression in oat aleurone cells of two kinases that show homology to MAP kinase and a ribosomal protein kinase. Plant Mol Biol 27: 1043–1052 (1995).Google Scholar
  132. 130.
    Hwang I, Goodman HM: Cloning of an Arabidopsis ribosomal protein S28 cDNA. Plant Physiol 102: 1357–1358 (1993).Google Scholar
  133. 131.
    Iglewski WJ: Cellular ADP-ribosylation of elongation factor 2. Mol Cell Biochem 138: 131–133 (1994).Google Scholar
  134. 132.
    Ito Y, Abe S, Davies E: Co-localization of cytoskeleton proteins and polysomes with a membrane fractions from peas. J Exp Bot 45: 253–259 (1994).Google Scholar
  135. 133.
    Janssen GMC, Moller W: Elongation factor 1βγ from Artemia: purification and properties of its subunits. Eur J Biochem 171: 119–129 (1988).Google Scholar
  136. 134.
    Janssen GMC, Morales J, Schipper A, Labbé J-C, Mulner-Lorillon O, Bellé O, Möller W: A major substrate of maturation promoting factor identified as elongation factor 1 βγδ in Xenopus laevis. J Biol Chem 266: 14885–14888 (1991).Google Scholar
  137. 135.
    Janssen GMC, Van Damme HTF, Kriek J, Amons R, Möller W: The subunit structure of elongation factor 1 from Artemia. Why two α-chains in this complex. J Biol Chem 269: 31410–31417 (1994).Google Scholar
  138. 136.
    Janssen GMC, Maessen GDF, Amons R, Moller W: Phosphorylation of elongation factor 1β by an endogenous kinase affects its catalytic nucleotide exchange activity. J Biol Chem 263: 11063–11066 (1988).Google Scholar
  139. 137.
    Jaramillo M, Browning K, Dever TE, Blum S, Trachsel H, Merrick WC, Ravel JM, Sonenberg N. Translation initiation factors that function as RNA helicases from mammals, plants and yeast. Biochim Biophys Acta 1050: 134–139 (1990).Google Scholar
  140. 138.
    Jayachandran S, Bailey-Serres J: Nucleotide sequence of a cDNA for the maize protein synthesis initiation factor 4A. Plant Physiol 108: 1317–1318 (1995).Google Scholar
  141. 139.
    Joanin P, Gigot C, Philipps G: cDNA nucleotide sequence and expression of a maize cytoplasmic ribosomal protein S13 gene. Plant Mol Biol 21: 701–704 (1993).Google Scholar
  142. 140.
    Jongens TA, Hay B, Jan LY, Jan YN: The germ cell-less gene product: a posteriorly localized component necessary for germ cell development in Drosophila. Cell 70: 569–584 (1992).Google Scholar
  143. 141.
    Joshi B, Cai A-L, Keiper BD, Minich WB, Mendez R, Beach CM, Stepinski J, Stolarski R, Darzynkiewicz E, Rhoads RE: Phosphorylation of eukaryotic protein synthesis initiation factor 4E at Ser-209. J Biol Chem 270: 14597–14603 (1995).Google Scholar
  144. 142.
    Kaempfer R, Van Emmelo J, Fiers W: Specific binding of eukaryotic initiation factor 2 to satellite tobacco necrosis virus RNA at a 5′-terminal sequence comprising the ribosome binding site. Proc Natl Acad Sci USA 78: 1542–1546 (1981).Google Scholar
  145. 143.
    Kambouris NG, Burke DJ, Creutz CE: Cloning and genetic characterization of a calcium-and phospholipid-binding protein from Saccharomyces cerevisiae that is homologous to translation elongation factor-1γ. Yeast 9: 151–163 (1993).Google Scholar
  146. 144.
    Kang HA, Hershey JWB: Effect of initiation factor eIF-5A depletion on protein synthesis and proliferation of Saccharomyces cerevisiae. J Biol Chem 269: 3934–3940 (1994).Google Scholar
  147. 145.
    Kasperaitis MAM, Voorma HO, Thomas AAM: The amino acid sequence of eukaryotic translation initiation factor 1 and its similarity to yeast initiation factor SUI1. FEBS Lett 365: 47–50 (1995).Google Scholar
  148. 146.
    Kawahara R, Sunabori S, Fukuda H, Komamine A: A gene expressed preferentially in the globular stage of somatic embryogenesis encodes elongation-factor 1α in carrot. Eur J Biochem 209: 157–162 (1992).Google Scholar
  149. 147.
    Kidou S, Umeda M, Kato A, Uchimiya H: Plant cDNA homologue to rat insulinoma gene encoding ribosomal protein S15. Nucl Acids Res 21: 2013 (1993).Google Scholar
  150. 148.
    Kim Y, Zhang H, Scholl RL: Two evolutionarily divergent genes encode a cytoplasmic ribosomal protein of Arabidopsis thaliana. Gene 93: 177–182 (1990).Google Scholar
  151. 149.
    Kimata Y, Harashima S, Kohno K: Expression of non-ADP-ribosylatable, diphtheria toxin-resistant elongation factor 2 in Saccharomyces cerevisiae. Biochem Biophys Res Commun 191: 1145–1151 (1993).Google Scholar
  152. 150.
    Kinzy TG, Ripmaster TL, Woolford JLJr.: Multiple genes encode the translation elongation factor EF-1γ in Saccharomyces cerevisiae. Nucl Acids Res 22: 2703–2707 (1994).Google Scholar
  153. 151.
    Kongsuwan K, Yu Q, Vincent A, Frisardi MC, Rosbash M, Lengyel JA, Merriam J: A Drosophila Minute gene encodes a ribosomal protein. Nature 317: 555–558 (1985).Google Scholar
  154. 152.
    Kozak M: The scanning model for translation: an update. J Cell Biol 108: 229–241 (1989).Google Scholar
  155. 153.
    Kozak M: A consideration of alternative models for the initiation of translation in eukaryotes. Crit Rev Biochem Mol Biol 27: 385–402 (1992).Google Scholar
  156. 154.
    Kozak M: Regulation of translation in eukaryotic systems. Annu Rev Cell Biol 8: 197–225 (1992).Google Scholar
  157. 155.
    Krishnan HB: Nucleotide and primary sequences of a rice endosperm cDNA are extensively homologous to elongation factor 1β. Biochem Biophys Res Commun 209: 1026–1031 (1995).Google Scholar
  158. 156.
    Kumagai F, Hasezawa S, Takahashi Y, Nagata T: The involvement of protein synthesis elongation factor 1α in the organization of microtubules on the perinuclear region during the cell cycle transition from M phase to G1 phase in tobacco BY-2 cells. Bot Acta, in press (1995).Google Scholar
  159. 157.
    Langland JO, Langland LA, Browning KS, Roth DA: Phophorylation of plant eukaryotic initiation factor-2 by the plant encoded double-stranded RNA-dependent protein kinase, pPKR, and inhibition of protein synthesis in vitro. J Biol Chem 271: 4539–4544 (1996).Google Scholar
  160. 158.
    Langland JO, Jin S, Jacobs BL, Roth DA: Identification of a plant-encoded analog of PKR, the mammalian double-stranded RNA-dependent protein kinase. Plant Physiol 108: 1259–1267 (1995).Google Scholar
  161. 159.
    Larkin JC, Hunsperger JP, Culley D, Rubenstein I, Silflow CD: The organization and expression of a maize ribosomal protein gene family. Genes Devel 3: 500–509 (1989).Google Scholar
  162. 160.
    Lauer SJ, Browning KS, Ravel JM: Characterization of initiation factor 3 from wheat germ. 2. Effects of polyclonal and monoclonal antibodies on activity. Biochemistry 24: 2928–2931 (1985).Google Scholar
  163. 161.
    Lauer SJ, Burks E, Irvin JD, Ravel JM: Purification and characterization of three elongation factors, EF-1α, EF-1βγ and EF-2, from wheat germ. J Biol Chem 259: 1644–1648 (1984).Google Scholar
  164. 162.
    Lauer SJ, Burks EA, Ravel JM: Characterization of initiation factor 3 from wheat germ. 1. Effects of proteolysis on activity and subunit composition. Biochemistry 24: 2924–2928 (1985).Google Scholar
  165. 163.
    Lax S, Fritz W, Browning K, Ravel J: Isolation and characterization of factors from wheat germ that exhibit eukaryotic initiation factor 4B activity and overcome 7-methylguanosine 5′-triphosphate inhibition of polypeptide synthesis. Proc Natl Acad Sci USA 82: 330–333 (1985).Google Scholar
  166. 164.
    Lax SR, Browning KS, Maia DM, Ravel JM: ATPase activities of wheat germ initiation factors 4A 4B and 4F. J Biol Chem 261: 15632–15636 (1986).Google Scholar
  167. 165.
    Lax SR, Lauer SJ, Browning KS, Ravel JM: Purification and properties of protein synthesis initiation and elongation factors from wheat germ. Meth Enzymol 118: 109–128 (1986).Google Scholar
  168. 166.
    Lax SR, Osterhout JJ, Ravel JM: Factors from wheat germ that enhance the activity of eukaryotic initiation factor eIF-2: isolation and characterization of Co-eIF-β. J Biol Chem 257: 8233–8237 (1982).Google Scholar
  169. 167.
    Lazaris-Karatzas A, Montine KS, Sonenberg N: Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5′ cap. Nature 345: 544–547 (1990).Google Scholar
  170. 168.
    Lebrun M, Freyssinet G: Nucleotide sequence and characterization of a maize cytoplasmic ribosomal protein S11 cDNA. Plant Mol Biol 17: 265–268 (1991).Google Scholar
  171. 169.
    Lenk P, Ransom L, Kaufmann Y, Penman S: A cytoskeletal structure with associated polyribosomes obtained from HeLa cells. Cell 10: 67–78 (1977).Google Scholar
  172. 170.
    Lenstra JA, Bloemendal H: The major proteins from HeLa cells. Eur J Biochem 130: 419 (1983).Google Scholar
  173. 171.
    Lenvik TR, Key JL, Gantt JS: Ribosomal protein S11 genes from Arabidopsis and soybean. Plant Physiol 105: 1027–1028 (1994).Google Scholar
  174. 172.
    Liboz T, Bardet C, LeVan Thai A, Axelos M, Lescure B: The four members of the gene family encoding the Arabidopsis thaliana translation elongation factor EF-1α are actively transcribed. Plant Mol Biol 14: 107–110 (1990).Google Scholar
  175. 173.
    Linder P, Lasko PF, Ashburner M, Leroy P, Nielsen PJ, Nishi K, Schnier J, Slonimski PP: Birth of the D-E-A-D box. Nature 337: 121–122 (1989).Google Scholar
  176. 174.
    Linder P, Slonimski PP: An essential yeast protein, encoded by duplicated genes TIF1 and TIF2 and homologous to the mammalian translation initiation factor eIF-4A, can suppress a mitochondrial missense mutation. Proc Natl Acad Sci USA 86: 2286–2290 (1989).Google Scholar
  177. 175.
    Littlepage LE, Garman ME, Mendenhall JM, Morejohn LC: Plant microtubule (MT) severing, stiffening and bundling by wheat germ protein synthesis elongation factor 1α (EF-1α). Mol Biol Cell 6: 258a (1995).Google Scholar
  178. 176.
    Lu G, Wu K, Ferl RJ: A cDNA for Arabidopsis cytosol ribosomal protein S11. Plant Physiol 102: 695–696 (1993).Google Scholar
  179. 177.
    Luby-Phelps K: Effect of cytoarchitecture on the transport and localization of protein synthetic machinery. J Cell Biochem 52: 140–147 (1993).Google Scholar
  180. 178.
    Mader S, Lee H, Pause A, Sonenberg N: The translation initiation factor eIF-4E binds to a common motif shared by the translation factor eIF-4γ and the translational repressors 4E-binding proteins. Mol Cell Biol 15: 4990–4997 (1995).Google Scholar
  181. 179.
    Madsen LH, Kreiberg JD, Gausing K: A small gene family in barley encodes ribosomal proteins homologous to yeast YL17 and L22 from archaebacteria, eubacteria, and chloroplasts. Curr Genet 19: 417–422 (1991).Google Scholar
  182. 180.
    Maessen GDF, Amons R, Maassen JA, Moller W: Primary structure of elongation factor 1β from Artemia. FEBS Lett 208: 77–83 (1986).Google Scholar
  183. 181.
    Mahe A, Grisvard J, Dron M: Fungal-and Plant-specific gene markers to follow the bean anthracnose infection process and normalize a bean chitinase mRNA induction. Mol Plant-Microbe Inter 5: 242–248 (1992).Google Scholar
  184. 182.
    Makkinje A, Xiong H, Li M, Damuni Z: Phosphorylation of eukaryotic protein synthesis initiation factor 4E by insulinstimulated protamine kinase. J Biol Chem 270: 14824–14828 (1995).Google Scholar
  185. 183.
    Marty I, Meyer Y: cDNA nucleotide sequence and expression of a tobacco cytoplasmic ribosomal protein L2 gene. Nucl Acids Res 20: 1517–1522 (1992).Google Scholar
  186. 184.
    Matsumoto S, Oizumi N, Taira H, Ejiri S: Cloning and sequencing of the cDNA encoding rice elongation factor 1β. FEBS Lett 311: 46–48 (1992).Google Scholar
  187. 185.
    Matsumoto S, Terui Y, Xi S, Taira H, Ejiri S: Cloning and characterization of the cDNA encoding rice elongation factor 1β. FEBS Lett 338: 103–106 (1994).Google Scholar
  188. 186.
    Mattheakis LC, Shen WH, Collier RJ: DPH5, a methyltransferase gene required for diphthamide biosynthesis in Saccharomyces cerevisiae. Mol Cell Biol 12: 4026–4037 (1992).Google Scholar
  189. 187.
    Maxwell ES, Robinson EA, Henriksen O: Proceedings: elongation factor 2: amino acid sequence at the site of ADP-ribosylation. J Biochem (Tokyo) 77: 9p-9b (1975).Google Scholar
  190. 188.
    Mehta AM, Saftner RA, Mehta RA, Davies PJ: Identification of posttranslationally modified 18-kilodalton protein from rice as eukaryotic translation initiation factor 5A. Plant Physiol 106: 1413–1419 (1994).Google Scholar
  191. 189.
    Mehta HB, Dholakia JN, Roth WW, Parekh BS, Montelaro RC, Woodley CL, Wahba AJ: Structural studies on the eukaryotic chain initiation factor 2 from rabbit reticulocytes and the brine shrimp Artemia embryos: phosphorylation by the heme-controlled repressor and casein kinase II. J Biol Chem 261: 6705–6711 (1986).Google Scholar
  192. 190.
    Melanson DL, Ingle J: Regulation of ribosomal RNA accumulation by auxin in artichoke tissue. Plant Physiol 62: 761–765 (1978).Google Scholar
  193. 191.
    Merrick WC: Overview: mechanism of translation initiation in cukaryotes. Enzyme 44: 7–16 (1990).Google Scholar
  194. 192.
    Merrick WC: Mechanism and regulation of eukaryotic protein synthesis. Microbiol Rev 56: 291–315 (1992).Google Scholar
  195. 193.
    Merrick WC: Eukaryotic protein synthesis: An in vitro analysis. Biochimie 76: 822–830 (1994).Google Scholar
  196. 194.
    Merrick WC, Dever TE, Kinzy TG, Conroy SC, Cavallius J, Owens CL: Characterization of protein synthesis factors from rabbit reticulocytes. Biochim Biophys Acta 1050: 235–240 (1990).Google Scholar
  197. 195.
    Metz AM, Browning KS: Sequence of a cDNA encoding wheat eukaryotic protein synthesis initiation factor 4A. Gene 131: 299–300 (1993).Google Scholar
  198. 196.
    Metz AM, Timmer RT, Allen ML, Browning KS: Sequence of a cDNA encoding the α-subunit of wheat translation elongation factor 1. Gene 120: 315–316 (1992).Google Scholar
  199. 197.
    Metz AM, Timmer RT, Browning KS: Sequences for two cDNAs encoding Arabidopsis thaliana eukaryotic protein synthesis initiation factor 4A. Gene 120: 313–314 (1992).Google Scholar
  200. 198.
    Metz AM, Timmer RT, Browning KS: Isolation and sequence of a cDNA encoding the cap binding protein of wheat eukaryotic protein synthesis initiation factor 4F. Nucl Acids Res 20: 4096 (1992).Google Scholar
  201. 199.
    Milburn SC, Hershey JWB, Davies MV, Kelleher K, Kaufman RJ: Cloning and expression of eukaryotic initiation factor 4B cDNA: sequence determination identifies a common RNA recognition motif. EMBO J 9: 2783–2790 (1990).Google Scholar
  202. 200.
    Mitsui H, Nakatani K, Yamaguchi-Shinozaki K, Shinozaki K, Nishikawa K, Takahashi H: Sequencing and characterization of the kinesin-related genes katB and katC of Arabidopsis thaliana. Plant Mol Biol 25: 865–876 (1994).Google Scholar
  203. 201.
    Mizoguchi T, Hayashida N, Yamaguchi-Shinozaki K, Kamada H, Shinozaki K: Two genes that encode ribosomal-protein S6 kinase homologs are induced by cold or salinity stress in Arabidopsis thaliana. FEBS Lett 358: 199–204 (1995).Google Scholar
  204. 202.
    Moldave K: Eukaryotic protein synthesis. Annu Rev Biochem 54: 1109–1149 (1985).Google Scholar
  205. 203.
    Monke G, Sonnewald U: Elevated mRNA levels of the ribosomal protein L19 and a calmodulin-like protein in assimilate-accumulating transgenic tobacco plants. Plant Physiol 107: 1451–1452 (1995).Google Scholar
  206. 204.
    Montesano L, Glitz DG: Wheat germ cytoplasmic ribosomes. J Biol Chem 263: 4939–4944 (1988).Google Scholar
  207. 205.
    Montesano L, Glitz DG: Wheat germ cytoplasmic ribosomes. J Biol Chem 263: 4932–4938 (1988).Google Scholar
  208. 206.
    Morelli JK, Shewmaker CK, Vayda ME: Biphasic stimulation of translational activity correlates with induction of translation elongation factor 1 subunit α upon wounding in potato tubers. Plant Physiol 106: 897–903 (1994).Google Scholar
  209. 207.
    Mundy J, Leah R, Boston R, Endo Y, Stirpe F: Genes encoding ribosomal inactvating proteins. Plant Mol Biol Rep (CPGN Supplement) 12: s60-s62 (1994).Google Scholar
  210. 208.
    Nagashima K, Kasai M, Nagata S, Kaziro Y: Structure of the two genes coding for polypeptide chain elongation factor 1α (EF-1α) from Saccharomyces cerevisiae. Gene 45: 265–273 (1986).Google Scholar
  211. 209.
    Nairn AC, Palfrey HC: Identification of the Major Mr 100,000 substrate for calmodulin-dependent protein kinase III in mammalian cells as elongation factor-2. J Biol Chem 262: 17299–17303 (1987).Google Scholar
  212. 210.
    Nakamura I, Kameya N, Aoki T, Tada T, Norita E, Kanzaki H, Uchimiya H: Nucleotide sequence of a rice cDNA encoding a homolog of the eukaryotic ribosomal protein S8. Plant Physiol 107: 1463–1464 (1995).Google Scholar
  213. 211.
    Naranda T, MacMillan SE, Hershey JWB: Purified yeast translational initiation factor eIF-3 is an RNA-binding protein complex that contains the PRT1 protein. J Biol Chem 269: 32286–32292 (1994).Google Scholar
  214. 212.
    Naranda T, Strong WB, Menaya J, Fabbri BJ, Hershey JWB: Two structural domains of initiation factor eIF-4B are involved in binding to RNA. J Biol Chem 269: 14465–14472 (1994).Google Scholar
  215. 213.
    Nielsen PJ, Trachsel H: The mouse protein synthesis initiation factor 4A gene family includes two related functional genes which are differentially expressed. EMBO J 7: 2097–2105 (1988).Google Scholar
  216. 214.
    Nishi R, Hashimoto H, Uchimiya H, Kato A: The primary structure of two proteins from the small ribosomal subunit of rice. Biochim Biophys Acta 1216: 113–114 (1993).Google Scholar
  217. 215.
    Nishi R, Kidou S, Uchimiya H, Kato A: Isolation and characterization of a rice cDNA which encodes the eukaryotic initiation factor 4A. Biochim Biophys Acta 1174: 293–294 (1993).Google Scholar
  218. 216.
    Nishi R, Kidou S, Uchimiya H, Kato A: The primary structure of two proteins from the large ribosomal subunit of rice. Biochim Biophys Acta 1216: 110–112 (1993).Google Scholar
  219. 217.
    Noller HF: Ribosomal RNA and translation. Annu Rev Biochem 60: 191–227 (1991).Google Scholar
  220. 218.
    Nygård O, Nilsson L: Translational dynamics: interactions between the translational factors, tRNA and ribosomes during eukaryotic protein synthesis. Eur J Biochem 191: 1–17 (1990).Google Scholar
  221. 219.
    Oizumi N, Matsumoto S, Taira H, Ejiri S: Nucleotide sequences of the cDNA encoding wheat elongation factor 1β′. Nucl Acids Res 20: 5225 (1992).Google Scholar
  222. 220.
    Omura F, Kohno K, Uchida T: The histidine residue of condon 715 is essential for function of elongation factor 2. Eur J Biochem 180: 1–8 (1989).Google Scholar
  223. 221.
    Oppenheimer NJ, Bodley JW: Diphtheria toxin. Site and configuration of ADP-ribosylation of diphthamide in elongation factor 2. J Biol Chem 256: 8579–8581 (1981).Google Scholar
  224. 222.
    Ornelles DA, Fey EG, Penman S: Cytochalasin releases mRNA from the cytoskeletal framework and inhibits protein synthesis. Mol Cell Biol 6: 1650–1662 (1986).Google Scholar
  225. 223.
    Osterhout JJ, Lax SR, Ravel JM: Factors from wheat germ that enhance the activity of eukaryotic initiation factor eIF-2: isolation and characterization of Co-eIF-2α. J Biol Chem 258: 8285–8289 (1983).Google Scholar
  226. 224.
    Owttrim GW, Hofmann S, Kuhlemeier C: Divergent genes for translation initiation factor eIF-4A are coordinately expressed in tobacco. Nucl Acids Res 19: 5491–5496 (1991).Google Scholar
  227. 225.
    Owttrim GW, Mandel T, Trachsel H, Thomas AA, Kuhlemeier C: Characterization of the tobacco eIF-4A gene family. Plant Mol Biol 26: 1747–1757 (1994).Google Scholar
  228. 226.
    Pain VM: Translational control during amino acid starvation. Biochimie 76: 718–728 (1994).Google Scholar
  229. 226a.
    Pain VM: Initiation of protein synthesis in eukarytotic cells. Eur J Biochem 236: 747–771 (1996).Google Scholar
  230. 227.
    Palen E, Venema RC, Chang Y-WE, Traugh JA: GDP as a regulator of phosphorylation of elongation factor 1 by casein kinase II. Biochemistry 33: 8515–8520 (1994).Google Scholar
  231. 228.
    Pappenheimer AMJr: Diphtheria toxin. Annu Rev Biochem 46: 69–94 (1977).Google Scholar
  232. 229.
    Paredes AM: Physical characterization of initiation factor eIF-3 by image enhancement and electron microscopy. Master's Thesis, University of Texas at Austin (1988).Google Scholar
  233. 230.
    Park MH, Wolff EC, Folk JE: Is hypusine essential for eukaryotic cell proliferation? Trends Biochem Sci 18: 475–479 (1993).Google Scholar
  234. 231.
    Park MH, Wolff EC, Folk JE: Hypusine: its post-translational formation in eukaryotic initiation factor 5A and its potential role in cellular regulation. Biofactors 4: 95–104 (1993).Google Scholar
  235. 232.
    Pause A, Méthot N, Svitkin Y, Merrick WC, Sonenberg N: Dominant negative mutants of mammalian translation initiation factor eIF-4A define a critical role for eIF-4F in cap-dependent and cap-independent initiation of translation. EMBO J 13: 1205–1215 (1994).Google Scholar
  236. 233.
    Pause A, Sonenberg N: Mutational analysis of a DEAD box RNA helicase: the mammalian translation initiation factor eIF-4A. EMBO J 11: 2643–2654 (1992).Google Scholar
  237. 234.
    Pay A, Heberle-Bors E, Hirt H: Isolation and sequece determination of the plant homologue of the eukaryotic initiation factor 4D cDNA from alfalfa, Medicago sativa. Plant Mol Biol 17: 927–929 (1991).Google Scholar
  238. 235.
    Penman S: Rethinking cell structure. Proc Natl Acad Sci USA 92: 5251–5257 (1995).Google Scholar
  239. 236.
    Perentesis JP, Genbauffe FS, Veldman SA, Galeotti CL, Livingston DM, Bodley JW, Murphy JR: Expression of diphtheria toxin fragment A and hormone-toxin fusion proteins in toxin-resistant yeast mutants. Proc Natl Acad Sci USA 85: 8386–8390 (1988).Google Scholar
  240. 237.
    Perez-Bercoff R, Kaempfer R: Genomic RNA of Mengovirus. V. Recognition of common features by ribosomes and eucaryotic initiation factor 2. J Virol 41: 30–41 (1982).Google Scholar
  241. 238.
    Perez-Mendez A, Aguilar R, Briones E, Sanchez-de-Jimenez E: Characterization of ribosomal protein phosphorylation in maize axes during germination. Plant Sci 94: 71–79 (1993).Google Scholar
  242. 239.
    Perlick AM, Puhler A: A survey of transcripts expressed specifically in root nodules of broadbean (Vicia faba L.). Plant Mol Biol 22: 957–970 (1993).Google Scholar
  243. 240.
    Pérez L, Aguilar R, Méndez AP, Sánchez de Jiménez E: Phosphorylation of ribosomal proteins induced by auxins in maize embryonic tissues. Plant Physiol 94: 1270–1275 (1990).Google Scholar
  244. 241.
    Phan LD, Perentesis JP, Bodley JW: Saccharomyces cerevisiae elongation factor 2. Mutagenesis of the histidine precursor of diphthamide yields a functional protein that is resistant to diphtheria toxin. J Biol Chem 268: 8665–8668 (1993).Google Scholar
  245. 242.
    Pokalsky AR, Hiatt WR, Ridge N, Rasmussen R, Houck CM, Shewmaker CK: Structure and expression of elongation factor 1α in tomato. Nucl Acids Res 17: 4661–4673 (1989).Google Scholar
  246. 243.
    Price N, Proud C: The guanine nucleotide-exchange factor, eIF-2B. Biochimie 76: 748–760 (1994).Google Scholar
  247. 244.
    Proud CG: Peptide-chain elongation in eukaryotes. Mol Biol Rep 19: 161–170 (1994).Google Scholar
  248. 245.
    Proud CG: PKR: A new name and new roles. Trends Biochem Sci 20: 241–246 (1995).Google Scholar
  249. 246.
    Raff JW, Whitfield WGF, Glover DM: Two distinct mechanisms localise cyclin B transcripts in synctial Drosophila embryos. Development 110: 1249–1261 (1990).Google Scholar
  250. 247.
    Ray BK, Lawson TG, Abramson RD, Merrick WC, Thach RE: Recycling of messenger RNA cap binding proteins mediated by eukaryotic initiation factor 4B. J Biol Chem 261: 11466–11470 (1986).Google Scholar
  251. 248.
    Raychaudhuri P, Stringer EA, Valenzuela DM, Maitra U: Ribosomal subunit anitassociation activity in rabbit reticulocyte. J Biol Chem 259: 11930–11935 (1984).Google Scholar
  252. 249.
    Reinbothe S, Mollenhauer B, Reinbothe C: JIPs and RIPs: the regulation of plant gene expression by jasmonates in response to environmental cues and pathogens. Plant Cell 6: 1197–1209 (1994).Google Scholar
  253. 250.
    Reinbothe S, Reinbothe C, Lehmann J, Becker W, Apel K, Parthier B: JIP60, a methyl jasmonate-induced ribosome-inactivating protein involved in plant stress reactions. Proc Natl Acad Sci USA 91: 7012–7016 (1994).Google Scholar
  254. 251.
    Rhoads RE: Protein synthesis, cell growth and oncogenesis. Curr Opin Cell Biol 3: 1019–1024 (1991).Google Scholar
  255. 252.
    Rhoads RE: Regulation of eukaryotic protein synthesis by initiation factors. J Biol Chem 268: 3017–3020 (1993).Google Scholar
  256. 253.
    Rhoads RE, Joshi B, Minich WB: Participation of initiation factors in the recruitment of mRNA to ribosomes. Biochimie 76: 831–838 (1994).Google Scholar
  257. 254.
    Rhoads RE, Joshi-Barve S, Rinker-Schaeffer C: Mechanism of action and regulation of protein synthesis initiation factor 4E: effects on mRNA discrimination, cellular growth rate, and oncogenesis. Prog Nucl Acid Res 46: 183–219 (1993).Google Scholar
  258. 255.
    Riis B, Rattan SIS, Clark BFC, Merrick WC: Eukaryotic protein elongation factors. Trends Biochem Sci 15: 420 (1990).Google Scholar
  259. 256.
    Ripmaster TL, Vaughn GP, Woolford JLJr: DRS1 to DRS7, novel genes required for ribosome assembly and function in Saccharomyces cerevisiae. Mol Cell Biol 13: 7901–7912 (1993).Google Scholar
  260. 257.
    Robinson EA, Henriksen O, Maxwell ES: Elongation factor 2. Amino acid sequence at the site of adenosine diphosphate ribosylation. J Biol Chem 249: 5088–5093 (1974).Google Scholar
  261. 258.
    Rosenfeld MG, Barrieux A: A. Characterization of GTP-dependent Met-tRNA binding protein. J Biol Chem 252: 3843–3847 (1977).Google Scholar
  262. 259.
    Ruhl M, Himmelspach M, Bahr GM, Hammerschmid F, Jaksche H, Wolff B, Aschauer H, Farrington GK, Probst H, Bevec D, Hauber J: Eukaryotic initiation factor 5A is a cellular target of the human immunodeficiency virus type 1 Rev activation domain mediating trans-activation. J Cell Biol 123: 1309–1320 (1993).Google Scholar
  263. 260.
    Russell DW, Spremulli LL: Purification and characterization of a ribosome dissociation factor (eukaryotic initiation factor 6) from wheat germ. J Biol Chem 254: 8796–8800 (1979).Google Scholar
  264. 261.
    Ryazanov AG: Ca2+/calmodulin-dependent phosphorylation of elongation factor 2. FEBS Lett 214: 331–334 (1987).Google Scholar
  265. 262.
    Ryazanov AG, Davydova EK: Mechanism of elongation factor 2 (EF-2) inactivation upon phosphorylation: Phosphorylated EF-2 is unable to catalyze translocation. FEBS Lett 251: 187–190 (1989).Google Scholar
  266. 263.
    Ryazanov AG, Shestakova EA, Natapov PG: Phosphorylation of elongation factor 2 by EF-2 kinase affects rate of translation. Nature 334: 170–173 (1988).Google Scholar
  267. 264.
    Ryazanov AG, Spirin AS: Phosphorylation of elongation factor 2: a key mechanism regulating gene expression in vertebrates. New Biol 2: 843–850 (1990).Google Scholar
  268. 265.
    Rychlik W, Domier LL, Gardner PR, Hellmann GM, Rhoads RE: Amino acid sequence of the mRNA cap-binding protein from human tissues. Proc Natl Acad Sci USA 84: 945–949 (1987).Google Scholar
  269. 266.
    Samuel CE: The eIF-2α protein kinases, regulators of translation in eukaryotes from yeasts to humans. J Biol Chem 268: 7603–7606 (1993).Google Scholar
  270. 267.
    Sanders J, Maassen JA, Amons R, Möller W: Nucleotide sequence of human elongation factor-1β cDNA. Nucl Acids Res 19: 4551 (1991).Google Scholar
  271. 268.
    Sanders J, Raggiaschi R, Morales J, Moller W: The human leucine zipper-containing guanine-nucleotide exchange protein elongation factor-1δ. Biochim Biophys Acta 1174: 87–90 (1993).Google Scholar
  272. 269.
    Sangwan V, Lenvik TR, Gantt JS: The Arabidopsis thaliana ribosomal protein S15 (rig) gene. Biochim Biophys Acta 1216: 221–226 (1993).Google Scholar
  273. 270.
    Scharf KD, Nover L: Heat-shock induced alterations of ribosomal protein phosphorylation in plant cell cultures. Cell 30: 427–437 (1982).Google Scholar
  274. 271.
    Scharf KD, Nover L: Control of ribosome biosynthesis in plant cell cultures under heat shock conditions. II. Ribosomal proteins. Biochim Biophys Acta 909: 44–57 (1987).Google Scholar
  275. 272.
    Schnier J, Schwelberger HG, Smit-McBride Z, Kang HA, Hershey JWB: Translation initiation factor 5A and its hypusine modification are essential for cell viability in the yeast Saccharomyces cerevisiae. Mol Cell Biol 11: 3105–3114 (1991).Google Scholar
  276. 274.
    Schreier MH, Erni B, Staehelin T: Initiation of mammalian protein synthesis. I. Purification and characterization of seven initiation factors. J Mol Biol 116: 727–753 (1977).Google Scholar
  277. 275.
    Schuler GD, Altschul SF, Lipman DJ: A workbench for multiple alignment construction and analysis. Proteins 9: 180–190 (1991).Google Scholar
  278. 276.
    Scoble J, Bilgin N, Ehrenberg M: Two GTPs are hydrolysed on two molecules of EF-Tu for each elongation cycle during code translation. Biochimie 76: 59–62 (1994).Google Scholar
  279. 277.
    Seal SN, Schmidt A, Marcus A. A heat-stable protein synthesis initiation factor from wheat germ. J Biol Chem 257: 8634–8637 (1982).Google Scholar
  280. 278.
    Seal SN, Schmidt A, Marcus A: Fractionation and partial characterization of the protein synthesis system of wheat germ. J Biol Chem 258: 866–871 (1983).Google Scholar
  281. 279.
    Seal SN, Schmidt A, Marcus A: Wheat Germ eIF-2 and Co-eIF-2: Resolution and functional characterization in in vitro protein synthesis. J Biol Chem 258: 10573–10576 (1983).Google Scholar
  282. 280.
    Seal SN, Schmidt A, Marcus A: Fractionation and partial characterization of the protein synthesis system of wheat germ. I. Resolution of two elongation factors and five initiation factors. J Biol Chem 258: 859–865 (1983).Google Scholar
  283. 281.
    Seal SN, Schmidt A, Marcus A: Eukaryotic initiation factor 4A is the component that interacts with ATP in protein chain initiation. Proc Natl Acad Sci USA 80: 6562–6565 (1983).Google Scholar
  284. 282.
    Seal SN, Schmidt A, Marcus A: The wheat germ protein synthesis system. Meth Enzymol 118: 128–140 (1986).Google Scholar
  285. 283.
    Seal SN, Schmidt A, Marcus A, Edery I, Sonenberg N: A wheat germ cap-site factor functional in protein chain initiation. Arch Biochem Biophys 246: 710–715 (1986).Google Scholar
  286. 284.
    Sha M, Balasta ML, Goss DJ: An interaction of wheat germ initiation factor 4B with oligoribonucleotides. J Biol Chem 269: 14872–14877 (1994).Google Scholar
  287. 285.
    Shaikhin SM, Smailov SK, Lee AV, Kozhanov EV, Iskakov BK: Interaction of wheat germ translation initiation factor 2 with GDP and GTP. Biochimie 74: 447–454 (1992).Google Scholar
  288. 286.
    Shewmaker CK, Ridge NP, Pokalsky AR, Rose RE, Hiatt WR: Nucleotide sequence of an EF-1α genomic clone from tomato. Nucl Acids Res 18: 4276 (1990).Google Scholar
  289. 287.
    Sikorski MM, Przbyl D, Legocki AB, Nierhaus KH: Group fractionation of wheat germ ribosomal proteins. Plant Sci Lett 30: 303–320 (1983).Google Scholar
  290. 288.
    Silar P: Is translational accuracy an out-dated topic. Trends Genet 10: 71–72 (1994).Google Scholar
  291. 289.
    Singer RH: Spatial organization of mRNA within cells. J Cell Biochem 52: 125–126 (1993).Google Scholar
  292. 290.
    Slobin LI: The role of eucaryotic elongation factor Tu in protein synthesis. Eur J Biochem 110: 555–563 (1980).Google Scholar
  293. 291.
    Slobin LI: Polypeptide chain elongation. In: Trachsel H (ed) Translation in Eukaryotes, pp. 149–175. CRC, Ann Arbor, MI (1991).Google Scholar
  294. 292.
    Smailov SK, Lee AV, Iskakov BK: Study of phosphorylation of translation elongation factor 2 (EF-2) from wheat germ. FEBS Lett 321: 219–223 (1993).Google Scholar
  295. 293.
    Smit-McBride Z, Dever TE, Hershey JWB, Merrick WC: Sequence determination and cDNA cloning of eukaryotic initiation factor 4D, the hypusine-containing protein. J Biol Chem 264: 1578–1583 (1989).Google Scholar
  296. 294.
    Sonenberg N: Regulation of translation and cell growth by eIF-4E. Biochimie 76: 839–846 (1994).Google Scholar
  297. 295.
    Sonenberg N, Shatkin A: Nonspecific effect of m7GMP on protein-RNA interactions. J Biol Chem 253: 6630–6632 (1978).Google Scholar
  298. 296.
    Spremulli LL, Walthall BJ, Lax SR, Ravel JM: Partial purification of the factors required for the initiation of protein synthesis in wheat germ. J Biol Chem 254: 143–148 (1979).Google Scholar
  299. 297.
    St Johnston D: The intracellular localization of messenger RNAs. Cell 81: 161–170 (1995).Google Scholar
  300. 298.
    Stafstrom JP, Devitt ML: Nucleotide sequence of four ribosomal protein L27 cDNAs from growing axillary buds of pea. Plant Physiol 107: 1031–1032 (1995).Google Scholar
  301. 299.
    Stafstrom JP, Sussex IM: Expression of a ribosomal protein gene in auxillary buds of pea seedlings. Plant Physiol 100: 1494–1502 (1992).Google Scholar
  302. 300.
    Stankovic B, Abe S, Davies E: Co-localization of polysomes, cytoskeleton, and membranes with protein bodies from corn endosperm. Protoplasma 177: 66–72 (1993).Google Scholar
  303. 301.
    Stansfield I, Grant GM, Akhmaloka, Tuite MF: Ribosomal association of the yeast SAL4 (SUP45) gene product: implications for its role in translation fidelity and termination. Mol Microbiol 6: 3469–3478 (1992).Google Scholar
  304. 302.
    Stansfield I, Tuite MF: Polypeptide chain termination in Saccharomyces cerevisiae. Curr Genet 25: 385–395 (1994).Google Scholar
  305. 303.
    Sutton F, Kenefick DG: Nucleotide sequence of a cDNA encoding an elongation factor (EF-1α) from barley primary leaf. Plant Physiol 104: 807 (1994).Google Scholar
  306. 304.
    Taylor MA, Arif SA, Kumar A, Davies HV, Scobie LA, Pearce SR, Flavell AJ: Expression and sequence analysis of cDNAs induced during the early stages of tuberization in different organs of the potato plant (Solanum tuberosum L.). Plant Mol Biol 20: 641–651 (1992).Google Scholar
  307. 305.
    Taylor MA, Davies HV: Nucleotide sequence of a cDNA clone for a 60S ribosomal protein L27 gene from potato (Solanum tuberosum L.). Plant Physiol 105: 1025–1026 (1994).Google Scholar
  308. 306.
    Thach RE: Cap recap: the involvement of elF-4F in regulating gene expression. Cell 68: 177–180 (1992).Google Scholar
  309. 307.
    Thiele D, Cottrelle P, Iborra R, Buhler J-M, Sentenac A, Fromageot P: Elongation factor 1α from Saccharomyces cerevisiae: rapid large-scale purification and molecular characterization. J Biol Chem 260: 3084–3089 (1985).Google Scholar
  310. 308.
    Thomas AAM, Benne R, Voorma HO: Initiation of eukaryotic protein synthesis. FEBS Lett 128: 177–184 (1981).Google Scholar
  311. 309.
    Timmer RT, Lax SR, Hughes DL, Merrick WC, Ravel JM, Browning KS: Characterization of wheat germ protein synthesis initiation factor eIF-4C and comparison of eIF-4C from wheat germ and rabbit reticulocytes. J Biol Chem 268: 24863–24867 (1993).Google Scholar
  312. 310.
    Tuite MF, Stansfield I: Translation: knowing when to stop. Nature 372: 614–615 (1994).Google Scholar
  313. 311.
    Turley RB, Ferguson DL, Meredith WRJr: Isolation and characterization of a cDNA encoding ribosomal protein L41 from cotton (Gossypium hirsutum L.). Plant Physiol 105: 1449–1450 (1994).Google Scholar
  314. 312.
    Turley RB, Ferguson DL, Meredith WRJr: Isolation and characterization of a cDNA encoding ribosomal protein S16 from cotton (Gossypium hirsutum L.). Plant Physiol 106: 1219–1220 (1994).Google Scholar
  315. 313.
    Turley RB, Ferguson DL, Meredith WRJr: A cDNA encoding ribosomal protein S4e from cotton (Gossypium hirsutum L.). Plant Physiol 108: 431–432 (1995).Google Scholar
  316. 314.
    Twardowski T, Legocki AB: Purification and some properties of elongation factor 2 from wheat germ. Biochim Biophys Acta 324: 171–183 (1973).Google Scholar
  317. 315.
    Ursin VM, Irvine JM, Hiatt WR, Shewmaker CK: Developmental analysis of elongation factor-1α expression in transgenic tobacco. Plant Cell 3: 583–591 (1991).Google Scholar
  318. 316.
    Valenzucla DM, Chaudhuri A, Maitra U: Eukaryotic ribosomal subunit anti-association activity of calf liver is contained in a single polypeptide chain protein of M r=25,500 (eukaryotic initiation factor 6). J Biol Chem 257: 7712–7719 (1982).Google Scholar
  319. 317.
    Valle RPC, Haenni AL: Peptide chain termination. In: Trachsel H (ed) Translation in Eukaryotes, pp. 177–191. CRC Press, Ann Arbor, MI (1991).Google Scholar
  320. 318.
    Van Damme H, Amons R, Janssen G, Möller W: Mapping the functional domains of the eukaryotic elongation factor 1βλ. Eur J Biochem 197: 505–511 (1991).Google Scholar
  321. 319.
    Van Damme HTF, Amons R, Karssies R, Timmers CJ, Janssen GMC, Möller W: Elongation factor 1β of Artemia: localization of functional sites and homology to elongation factor 1δ. Biochim Biophys Acta 1050: 241–247 (1990).Google Scholar
  322. 320.
    Van Heerden A, Browning KS: Expression in Escherichia coli of the two subunits of the isozyme form of wheat germ protein synthesis initiation factor 4F. Purification of the subunits and formation of an enzymatically active complex. J Biol Chem 269: 17454–17457 (1994).Google Scholar
  323. 321.
    Van Heugten HAA, Kasperaitis MAM, Thomas AAM, Voorma HO: Evidence that eukaryotic initiation factor (eIF) 2 is a cap-binding protein that stimulates cap recognition by eIF-4B and eIF-4F. J Biol Chem 266: 7279–7284 (1991).Google Scholar
  324. 322.
    Van Lijsebettens M, Vanderhaeghen R, De Block M, Bauw G, Villarroel R, Van Montagu M: An S18 ribosomal protein gene copy at the Arabidopsis PFL locus affects plant development by its specific expression in meristems. EMBO J 13: 3378–3388 (1994).Google Scholar
  325. 323.
    Van Ness BG, Howard JB, Bodley JW: ADP-ribosylation of elongation factor 2 by diphtheria toxin. NMR spectra and proposed structures of ribosyl-diphthamide and its hydrolysis products. J Biol Chem 255: 10710–10716 (1980).Google Scholar
  326. 324.
    Vayda ME, Schaeffer HJ: Hypoxic stress inhibits the appearance of wound-response proteins in potato tubers. Plant Physiol 88: 805–809 (1988).Google Scholar
  327. 325.
    Vayda ME, Shewmaker CK, Morelli JK: Translational arrest in hypoxic potato tubers is correlated with the aberrant association of elongation factor EF-1α with polysomes. Plant Mol Biol 28: 751–757 (1995).Google Scholar
  328. 326.
    Venema RC, Peters HI, Traugh JA: Phosphorylation of elongation factor 1 (EF-1) and valyl-tRNA synthetase by protein kinase C and stimulation of EF-1 activity. J Biol Chem 266: 12574–12580 (1991).Google Scholar
  329. 327.
    Venema RC, Peters HI, Traugh JA: Phosphorylation of valyl-tRNA synthetase and elongation factor 1 in response to phorbol esters is associated with stimulation of both activities. J Biol Chem 266: 11993–11998 (1991).Google Scholar
  330. 328.
    Voorma HO: Initiation: Met-tRNA binding. In: Trachsel H (ed) Translation In Eukaryotes, pp. 97–108. CRC Press, Ann Arbor, MI (1991).Google Scholar
  331. 329.
    Voorma HO, Thomas A, Goumans H, Amesz H, van der Mast C: Isolation and purification of initiation factors of protein synthesis from rabbit reticulocyte lysate. Meth Enzymol 60: 124–135 (1979).Google Scholar
  332. 330.
    Voorma HO, Thomas AAM, Van Heugten HAA: Initiation of protein synthesis in eukaryotes. Plant Mol Biol Rep 19: 139–145 (1994).Google Scholar
  333. 331.
    Wakiyama M, Saigoh M, Shiokawa K, Miura K: mRNA encoding the translation initiation factor eIF-4E is expressed early in Xenopus embryogenesis. FEBS Lett 360: 191–193 (1995).Google Scholar
  334. 332.
    Wang C, Dickson LK, Lehmann R: Genetics of nanos localization in Drosophila. Dev Dyn 199: 103–115 (1994).Google Scholar
  335. 333.
    Warskulat U, Perrey R, Wink M: Molecular cloning of a cDNA from Lupinus polyphyllus cell cultures encoding a ribosomal protein (rps16). Plant Mol Biol 16: 739–740 (1991).Google Scholar
  336. 334.
    Wasserman DA, Steitz JA: Alive with DEAD proteins. Nature 349: 463–464 (1991).Google Scholar
  337. 335.
    Webster C, Gaut RL, Browning KS, Ravel JM, Roberts JKM: Hypoxia enhances phosphorylation of eukaryotic initiation factor 4A in maize root tips. J Biol Chem 266: 23341–23346 (1991).Google Scholar
  338. 336.
    Webster C, Kim C-Y, Roberts JKM: Elongation and termination reactions of protein synthesis on maize root tip polyribosomes studied in a homologous cell-free system. Plant Physiol 96: 418–425 (1991).Google Scholar
  339. 337.
    Wei C, Kainuma M, Hershey JWB: Characterization of yeast translation initiation factor 1A and cloning of its essential gene. J Biol Chem 270: 22788–22794 (1995).Google Scholar
  340. 338.
    Wei C-L, MacMillan SE, Hershey JWB: Protein synthesis initiation factor eIF-1A is a moderately abundant RNA-binding protein. J Biol Chem 270: 5764–5771 (1995).Google Scholar
  341. 339.
    Wek RC: eIF-2 kinases: regulators of general and genespecific translation initiation. Trends Biochem Sci 19: 491–496 (1994).Google Scholar
  342. 340.
    Werner R, Guitton MC, Muehlbach HP: A tomato cDNA encodes a protein homologous to the eukaryotic ribosomal protein S25. Plant Physiol Biochem 33: 373–377 (1995).Google Scholar
  343. 341.
    Wilson PG, Culbertson MR: SUF12 Suppressor protein of yeast a fusion protein related to the EF-1 family of elongation factors. J Mol Biol 199: 559–573 (1988).Google Scholar
  344. 342.
    Wool IG: Eukaryotic ribosomes, structure, function, biogenesis, and evolution. In: Trachsel H (ed) Translation in Eukaryotes, pp. 3–33. CRC Press, Ann Arbor, MI (1991).Google Scholar
  345. 343.
    Yan R, Rychlik W, Etchison D, Rhoads RE: Amino acid sequence of the human protein synthesis initiation factor eIF-4λ. J Biol Chem 267: 23226–23231 (1992).Google Scholar
  346. 344.
    Yang F, Demma M, Warren V, Dharmawardhane S, Condeelis J: Identification of an actin-binding protein from Dictyostelium as elongation factor 1α. Nature 347: 494–496 (1990).Google Scholar
  347. 345.
    Yang W, Boss WF: Regulation of phosphatidylinositol 4-kinase by the activator PIK-A49. J Biol Chem 269: 3852–3857 (1994).Google Scholar
  348. 346.
    Yang W, Burkhart W, Cavallius J, Merrick WC, Boss WF: Purification and characterization of a phosphatidylinositol 4-kinase activator in carrot cells. J Biol Chem 268: 392–398 (1993).Google Scholar
  349. 347.
    Yoder-Hill J, Pause A, Sonenberg N, Merrick WC: The p46 subunit of eukaryotic initiation factor (eIF)-4F exchanges with eIF-4A. J Biol Chem 268: 5566–5573 (1993).Google Scholar
  350. 348.
    Yoon H, Donahue TF: The suil suppressor locus in Saccharomyces cerevisiae encodes a translation factor that functions during tRNAi Met recognition of the start codon. Mol Cell Biol 12: 248–260 (1992).Google Scholar
  351. 349.
    You W, Abe S, Davies E: Cosedimentation of pea root polysomes with the cytoskeleton. Cell Biol Int Rep 16: 663–673 (1992).Google Scholar
  352. 350.
    Zhang SH, Broome MA, Lawton MA, Hunter T, Lamb CJ: atpk1, a novel ribosomal protein kinase gene from Arabidopsis. II. Functional and biochemical analysis of the encoded protein. J Biol Chem 269: 17593–17599 (1994).Google Scholar
  353. 351.
    Zhouravleva G, Frolova L, Le Goff X, Le Guellec R, Inge-Vechtomov S, Kisselev L, Philippe M: Termination of translation in eukaryotes is governed by two interacting polypeptide chain release factors, eRF1 and eRF3. EMBO J 14: 4065–4072 (1995).Google Scholar
  354. 352.
    Zhu JK, Damsz B, Kononowicz AK, Bressan RA, Hasegawa PM: A higher plant extracellular vitronectin-like adhesion protein is related to the translational elongation factor-1α. Plant Cell 6: 393–404 (1994).Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Karen S. Browning
    • 1
  1. 1.Department of Chemistry and BiochemistryUniversity of Texas at AustinAustinUSA

Personalised recommendations