Photosynthesis Research

, Volume 33, Issue 2, pp 75–89

The oldest records of photosynthesis

  • Stanley M. Awramik


There is diverse, yet controversial fossil evidence for the existence of photosynthesis 3500 million years ago. Among the most persuasive evidence is the stromatolites described from low grade metasedimentary rocks in Western Australia and South Africa. Based on the understanding of the paleobiology of stromatolites and using pertinent fossil and Recent analogs, these Early Archean stromatolites suggest that phototrophs evolved by 3500 million years ago. The evidence allows further interpretation that cyanobacteria were involved. Besides stromatolites, microbial and chemical fossils are also known from the same rock units. Some microfossils morphologically resemble cyanobacteria and thus complement the adduced cyanobacterial involvement in stromatolite construction. If cyanobacteria had evolved by 3500 million years ago, this would indicate that nearly all prokaryotic phyla had already evolved and that prokaryotes diversified rapidly on the early Earth.

Key words

cyanobacteria stromatolites fossil record Archean 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Apel PWU (1980) On the early Archaean Isua iron-formation, West Greenland. Precambrian Res 11: 73–87CrossRefGoogle Scholar
  2. Awramik SM (1981) The pre-Phanerozoic biosphere-three billion years of crises and opportunities. In: Nitecki MH (ed) Biotic Crises in Ecological and Evolutionary Time, pp 83–102. Academic Press, New YorkGoogle Scholar
  3. Awramik SM and Barghoorn ES (1977) The Gunflint microbiota. Precambrian Res 5: 121–142CrossRefGoogle Scholar
  4. Awramik SM and Riding R (1988) Role of algal eukaryotes in subtidal columnar stromatolite formation. Proc Natl Acad Sci USA 85: 1327–1329Google Scholar
  5. Awramik SM, Schopf JW and Walter MR (1983) Filamentous fossil bacteria from the Archean of Western Australia. Precambrian Res 20: 357–374CrossRefGoogle Scholar
  6. Awramik SM, Schopf JW and Walter MR (1988) Carbonaceous filaments from North Pole, Western Australia: Are they fossil bacteria in Archean stromatolites? A discussion. Precambrian Res 39: 303–309CrossRefGoogle Scholar
  7. Barghoorn ES and Tyler SA (1965) Microorganisms from the Gunflint chert. Science 147: 563–577Google Scholar
  8. Belkin S and Jannasch HW (1989) Microbial mats at deepsea hydrothermal vents: New observations. In: Cohen Y and Rosenberg E (eds) Microbial Mats, pp 16–21. Am Assoc Microbiol, Washington, DCGoogle Scholar
  9. Bertrand-Sarfati J and Moussine-Pouchkine A (1985) Evolution and environmental conditions of the Conophyton associations in the Atar Dolomite (Upper Proterozoic), Mauritania. Precambrian Res 29: 207–234CrossRefGoogle Scholar
  10. Brock TR (1989) Evolutionary relationships of the autotrophic bacteria. In: Schlegel HG and Bowen B (eds) Autotrophic Bacteria, pp 499–512. Science Tech Publ, MadisonGoogle Scholar
  11. Buick R (1984) Carbonaceous filaments from North Pole, Western Australia: Are they fossil bacteria in Archean stromatolites?. Precambrian Res 24: 157–172CrossRefGoogle Scholar
  12. Buick R (1988) Carbonaceous filaments from North Pole, Western Australia: Are they fossil bacteria in Archaean stromatolites? A reply. Precambrian Res 39: 311–317CrossRefGoogle Scholar
  13. Buick R (1991) Microfossil recognition in Archean rocks: An appraisal of spheroids and filaments from a 3500 m.y. old chert-barite unit at North Pole, Western Australia. Palaios 5: 411–459Google Scholar
  14. Buick R and Dunlop JSR (1990) Evaporitic sediments of early Archean age from the Warrawoona Group. North Pole. Western Australia. Sedimentology 37: 247–277Google Scholar
  15. Buick R, Dunlop JSR and Groves DI (1981) Stromatolite recognition in ancient rocks: An appraisal of irregularly laminated structures in an Early Archaean chert-barite unit from North Pole, Western Australia. Alcheringa 5: 161–181Google Scholar
  16. Bylerly GR and Palmer MR (1991) Tourmaline mineralization in the Barberton Greenstone Belt, South Africa: Early Archean metasomatism by evaporite-derived boron. Contr Miner Petrol 107: 387–402CrossRefGoogle Scholar
  17. Byerly GR, Lowe DR and Walsh MM (1986) Stromatolites from the 3,300–3,500-Myr Swaziland Supergroup, Barberton Mountain Land, South Africa. Nature 319: 489–491Google Scholar
  18. Cairnes-Smith AG (1978) Precambrian solution chemistry, inverse segregation, and banded iron formations. Nature 276: 807–808Google Scholar
  19. Casanova J and Nury D (1989) Biosedimentologie des stromatolites fluvio-lacustres du fosse oligocene de Marseille. Bull Soc Geol France 6: 1173–1184Google Scholar
  20. Castenholz RW (1984) Composition of hot springs microbial mats: A summary. In: Cohen Y, Castenholz RW and Halvorson HO (eds) Microbial Mats: Stromatolites, pp 101–119. AR Liss, New YorkGoogle Scholar
  21. Cloud P (1973) Paleoecological significance of the banded iron-formation. Econ Geol 68: 1135–1143Google Scholar
  22. Cloud P (1976) Beginnings of biospheric evolution and their biogeochemical consequences. Paleobiology 2: 351–387Google Scholar
  23. Cloud P (1988) Oasis in Space, 508 pp. W.W. Norton, New YorkGoogle Scholar
  24. Cloud P and Morrison K (1979) On microbial contaminants, micropseudofossils, and the oldest records of life. Precambrian Res 9: 81–91CrossRefGoogle Scholar
  25. Cohen Y and Rosenberg E (Eds) (1989) Microbial Mats. American Society for Microbiology, 494 pp. Washington, D.C.Google Scholar
  26. Cohen Y, Jørgensen BB, Paden E and Shilo M (1975) Sulfide-dependent anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica. Nature 257: 489–491Google Scholar
  27. deWit MJ, Hart R, Martin A and Abbott P (1982) Archean abiogenic and probable biogenic structures associated with mineralized hydrothermal vent systems and regional metasomatism, with implications for greenstone belt studies. Econ Geol 77: 1783–1802Google Scholar
  28. Dill RF, Shinn EA, Jones AT, Kelly K and Steinen RP (1986) Giant subtidal stronatolites forming in normal salinity waters. Nature 324: 55–58Google Scholar
  29. Glaessner MF (1984) The Dawn of Animal Life, 244 pp. Cambridge Univ. Press, CambridgeGoogle Scholar
  30. Golubic S (1973) The relationship between blue-green algae and carbonate deposits. In: Carr N and Whitton BA (eds) The Biology of Blue-Green Algae, pp 434–472. Blackwell, OxfordGoogle Scholar
  31. Golubic S (1976) Organisms that build stromatolites. In: Walter MR (ed) Stromatolites, pp 113–126. Elsevier, AmsterdamGoogle Scholar
  32. Groves DI, Dunlop JSR and Buick R (1981) An early habitat for life. Sci Am 245: 64–73Google Scholar
  33. Hayes JM, Kaplan IR and Wedeking KW (1983) Precambrian organic geochemistry: Preservation of the record. In: Schopf JW (ed) Earth's Earliest Biosphere, pp 93–134. Princeton Univ. Press, PrincetonGoogle Scholar
  34. Hofmann HJ (1969a) Attributes of stromatolites. Geol Surv Canada, Paper 69-39, 58 ppGoogle Scholar
  35. Hofmann HJ (1969b) Stromatolites from the Proterozoic and Sibley Groups, Ontario. Geol Surv Canada, Paper 68–69, 77 ppGoogle Scholar
  36. Hofmann HJ (1976) Precambrian microflora, Belcher Islands, Canada: Significance and systematics. J Paleontol 50: 1040–1073Google Scholar
  37. Holo H and Grace D (1987) Polyglucose in Chloroflexus aurantiacus studied by 3C-NMR. Arch Microbiol 148: 292–297Google Scholar
  38. Holo H and Sirevag R (1986) Autotrophic growth and CO2 fixation of Chloroflexus aurantiacus. Arch Microbiol 145: 173–180Google Scholar
  39. Horodyski RJ, Bloeser B and VonderHaar S (1977) Laminated algal mats from a coastal lagoon, Laguna Mormona, Baja California, Mexico. J Sediment Petrol 47: 680–696Google Scholar
  40. Javor B (1989) Hypersaline Environments, 328 pp. Springer-Verlag, BerlinGoogle Scholar
  41. Jørgensen BB and Nelson DC (1988) Bacterial zonation, photosynthesis, and spectral light distribution in hot spring microbial mats of Iceland. Microb Ecol 16: 133–147Google Scholar
  42. Kalkowsky E (1908) Oolith und Stromatolith im norddeutschen Buntsandstein. Dtsch Geol Ges 60: 68–125Google Scholar
  43. Kennard JM and James NP (1986) Thrombolites and stromatolites: Two distinct types of microbial structures. Palaios 1: 492–503Google Scholar
  44. Kidder DL and Awramik SM (1990) Acritarchs in lower greenschist facies argillite or the Middle Proterozoic Libby formation, upper Belt Supergroup, Montana. Palaios 5: 124–133Google Scholar
  45. Knoll AH (1984) The Archean/Proterozoic transition: A sedimentary and paleobiological perspective. In: Holland HD and Trendall AF (eds) Patterns of Change in Earth Evolution, pp 221–242. Springer-Verlag, BerlinGoogle Scholar
  46. Knoll AH (1985) Exceptional preservation of photosynthetic organisms in silicified carbonates and silicified peats. Phil Trans R Soc London B 311: 111–122Google Scholar
  47. Knoll AH, Barghoorn ES and Awramik SM (1978) New microorganisms from the Aphebian Gunflint Iron Formation, Ontario. J Paleontol 52: 976–992Google Scholar
  48. Krumbein WE (1983) Stromatolites—The challenge of a term in space and time. Precambrian Res 20: 493–531CrossRefGoogle Scholar
  49. Kuenen JG and Tuovinen OH (1981) The genera Thiobacillus and Thiomicrospira. In: Starr MP, Stolp H, Trüper HG, Balows A and Schlegel HG (eds) The Prokaryotes, Vol 1, pp 1023–1036. Springer-Verlag, BerlinGoogle Scholar
  50. Lambert IB, Donnelly TH, Dunlop JSR and Groves DI (1978) Stable isotopic compositions of early Archaean sulphate deposits of probable evaporitic and volcanogenic origin. Nature 276: 808–811Google Scholar
  51. Lowe DR (1980a) Archean sedimentation. Ann Rev Earth Planet Sci 1980 8: 140–194Google Scholar
  52. Lowe DR (1980b) Stromatolites 3,400-Myr old from the Archean of Western Australia. Nature 284: 441–443Google Scholar
  53. McKirdy DM and Hahn JH (1982) The composition of kerogen and hydrocarbons in Precambrian rocks. In: Holland HD and Schidlowski M (eds) Mineral Deposits and the Evolution of the Biosphere, pp 123–154. Springer-Verlag, BerlinGoogle Scholar
  54. Miller SL (1982) Prebiotic synthesis of organic compounds. In: Holland HD and Schidlowski M (eds) Mineral Deposits and the Evolution of the Biosphere, pp 155–176. Springer-Verlag, BerlinGoogle Scholar
  55. Muir MD (1987) Facies models for Australian Precambrian evaporites. In: Peryt T (ed) Evaporite Basins, pp 5–21. Springer-Verlag, BerlinGoogle Scholar
  56. Olson JM (1978) Precambrian evolution of photosynthetic and respiratory organisms. In: Hecht MK, Steere WC and Wallace B (eds) Evolutionary Biology, Vol 11, pp 1–37. Plenum, New YorkGoogle Scholar
  57. Olson JM and Pierson BK (1986) Photosynthesis 3.5 thousand million years ago. Photosynth Res 9: 251–259Google Scholar
  58. Olson JM and Pierson BK (1987) Evolution of reaction centers in photosynthetic prokaryotes. Int Rev Cytol 108: 209–248PubMedGoogle Scholar
  59. Pace NR (1991) Origin of life—Facing up to the physical setting. Cell 65: 531–533CrossRefPubMedGoogle Scholar
  60. Peat CJ, Muir MD, Plumb KA, McKirdy DM and Norvick MS (1978) Proterozoic microfossils from the Roper Group, Northern Territory, Australia. BMR J Austr Geol Geophys 3: 1–17Google Scholar
  61. Pflug HD (1966) Structured organic remains from the Fig Tree Series of the Barberton Mountain Land. Univ. Witwatersrand Econ Geol Res Unit Info Circ, 28, 14 ppGoogle Scholar
  62. Pierson BK and Olson JM (1989) Evolution of photosynthesis in anoxygenic photosynthetic procaryotes. In: Cohen Y and Rosenberg E (eds) Microbial Mats, pp 402–427. Am Assoc Microbiol, Washington, DCGoogle Scholar
  63. Preuss A, Schauder R and Fuchs G (1989) Carbon isotopic fractionation by autotrophic bacteria with three different CO2 fixation pathways. Z Naturforsch 44c: 397–402Google Scholar
  64. Read JF (1976) Calcretes and their distinction from stromatolites. In: Walter MR (ed) Stromatolites, pp 55–71. Elsevier, AmsterdamGoogle Scholar
  65. Schidlowski M (1982) Content and isotopic composition of reduced carbon in sediments. In: Holland HD and Schidlowski M (eds) Mineral Deposits and the Evolution of the Biosphere, pp 103–122. Springer-Verlag, BerlinGoogle Scholar
  66. Schidlowski M (1987) Application of stable carbon isotopes to early biochemical evolution on Earth. Ann Rev Earth Planet Sci 15: 47–72CrossRefGoogle Scholar
  67. Schidlowski M (1992) The initiation of biological precesses on Earth: Summary of empirical evidence. In: Engel MH and Macko SA (eds) Organic Geochemistry. Plenum, New York (in press)Google Scholar
  68. Schidlowski M, Hayes JM and Kaplan IR (1983) Isotopic inferences of ancient biochemistries: Carbon, sulfur, hydrogen and nitrogen. In: Schopf JW (ed) Earth's Earliest Biosphere, pp 149–186. Princeton Univ. Press, PrincetonGoogle Scholar
  69. Schopf JW (1968) Microflora of the Bitter Springs Formation, late Precambrian, central Australia. J Paleontol 42: 651–688Google Scholar
  70. Schopf JW and Sovietov YuK (1976) Microfossils in Conophyton from the Soviet Union and their bearing on Precambrian biostratigraphy. Science 193: 143–146Google Scholar
  71. Schopf JW and Walter MR (1983) Archean microfossils: New evidence of ancient microbes. In: Schopf JW (ed) Earth's Earliest Biosphere, pp 214–239. Princeton Univ. Press, PrincetonGoogle Scholar
  72. Schopf JW and Packer BM (1987) Early Archean (3.3 to 3.5 Ga-old) fossil microorganisms from the Warrawoona Group, Western Austrailia. Science 237: 70–73PubMedGoogle Scholar
  73. Semikhatov MA, Gebelein CD, Cloud P, Awramik SM and Benmore WC (1979) Stromatolite morphogenesis-progress and problems. Can J Earth Sci 16: 992–1015Google Scholar
  74. Sleep NH, Zahnle KJ, Kasting JF and Morowitz HJ (1989) Annihilation of ecosystems by large asteroid impacts on the early Earth. Nature 342: 139–142CrossRefPubMedGoogle Scholar
  75. Starr MP, Stolp H, Trüper HG, Balows A and Schlegel HG (eds) (1981) The Prokaryotes, Vol 1, 1102 pp. Springer-Verlag, BerlinGoogle Scholar
  76. Strother PK and Barghoorn ES (1980) Microspheres from the Swartkoppie Formation: A review. In: Halvorson HO and VanHolde KE (eds) The Origins of Life and Evolution, pp 1–18. AR Liss, New YorkGoogle Scholar
  77. Thrailkill J (1976) Spelothems. In: Walter MR (ed) Stromatolites, pp 73–86. Elsevier, AmsterdamGoogle Scholar
  78. Valentine JW and Erwin DH (1987) Interpreting great developmental experiments: The fossil record. In: Raff RA and Raff EC (eds) Development as an Evolutionary Process, pp 71–107. AR Liss, New YorkGoogle Scholar
  79. Valentine JW, Awramik SM, Signor PW and Sadler PM (1991) The biological explosion at the Precambrian-Cambrian boundary. In: Hecht MK, Wallace B and MacIntyre RJ (eds) Evolutionary Biology, Vol 25, pp 279–356. Plenum, New YorkGoogle Scholar
  80. Vermaas W (1989) The structure and function of Photosystem II. In: Bowler J and Mallin R (eds) Techniques and New Developments in Photosynthesis Research, NATO ASI Series, Vol 168, pp 35–59, Plenum, New YorkGoogle Scholar
  81. Vidal G (1984) The oldest eukaryotic cells. Sci Am 250: 48–57PubMedGoogle Scholar
  82. Walker JCG (1978) Oxygen and hydrogen in the primitive atmosphere. Pure Appl Geophys 116: 222–231Google Scholar
  83. Walker JCG, Klein C, Schidlowski M, Schopf JW, Stevenson DJ and Walter MR (1983) Environmental evolution of the Archean-Proterozoic earth. In: Schopf JW (ed) Earth's Earliest Biosphere, pp 260–290. Princeton Univ. Press, PrincetonGoogle Scholar
  84. Walsh MM (1992) Microfossils and possible microfossils from the early Archean Onverwacht Group, Barberton Mountain Land, South Africa. Precambrian Res 54: 271–293CrossRefPubMedGoogle Scholar
  85. Walsh MM and Lowe DR (1985) Filamentous microfossils from the 3,500-Myr-old Onverwacht Group, Barberton Mountain Land, South Africa. Nature 314: 530–532Google Scholar
  86. Walter MR (1976a) Geyserites of Yellowstone National Park: An example of abiogenic ‘stromatolites’. In: Walter MR (ed) Stromatolites, pp 87–112. Elsevier, AmsterdamGoogle Scholar
  87. Walter MR (1976b) Introduction. In: Walter MR (ed) Stromatolites, pp 1–3. Elsevier, AmsterdamGoogle Scholar
  88. Walter MR (1983) Archean stromatolites: Evidence of the earth's earliest benthos. In: Schopf JW (ed) Earth's Earliest Biosphere, pp 187–213. Princeton Univ. Press, PrincetonGoogle Scholar
  89. Walter MR, Buick R and Dunlop JSR (1980) Stromatolites 3,400–3,500 Myr old from the North Pole area, Western Australia. Nature 284: 443–445Google Scholar
  90. Ward DM, Weller R, Shiea J, Castenholz RW and Cohen Y (1989) Hot spring microbial mats: Anoxygenic and oxygenic mats of possible evolutionary significance. In: Cohen Y and Rosenberg E (eds) Microbial Mats, pp 3–15. Am Assoc Microbiol, Washington, DCGoogle Scholar
  91. Worrell GF (1985) Sedimentology and mineralogy of silicified evaporites in the basal Kromberg Formation, South Africa. Unpublished M.A. Thesis, Lousiana State University, 152 ppGoogle Scholar
  92. Woese CR (1987) Bacterial evolution. Microbiol Rev 51: 221–271PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • Stanley M. Awramik
    • 1
  1. 1.Department of Geological Sciences, Preston Cloud Research LaboratoryUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations