, Volume 69, Issue 1–3, pp 177–187 | Cite as

The appearance and disappearance of major vegetational assemblages: Long-term vegetational dynamics in eastern North America

  • Thompson WebbIII


Contoured maps of pollen percentages from eastern North America illustrate that the vegetation changed continuously during the past 18000 years. The maps show that the geographic distribution for selected pollen types from 500 years ago parallels the major patterns in the vegetation, and that the correspondence is good enough to justify using maps of fossil pollen to interpret the patterns and composition of the broad-scale vegetation from earlier times. Data for Artemisia, Cyperaceae, Picea, Betula, Alnus, Abies, and Pinus pollen illustrate how the changing location and abundance of their plant taxa and populations altered the spatial pattern, local composition, and the overall structure of the vegetation and thus led to thedisappearance as well as appearance of major biomes and ecotones. For example, the Picea parkland biome that existed from 18000 to 12000 yr B.P. within a broad region south of the ice sheet disappeared within 2000 years after 12000 yr B.P., and the modern boreal forest biome began to develop across a large area of central Canada only after 6000 yr B.P. On a time scale of 104 to 106 yr, these types of vegetation changes involve a continual overlapping and separation of the abundance distributions for different taxa. Such changes are likely to have been a feature of vegetational dynamics for millions of years.


Dynamics Fossil pollen Isopoll map Late Quaternary Long-term vegetation change 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bartlein P. J., Prentice I. C. & WebbIII T., 1986. Climatic response surfaces based on pollen from some eastern North American taxa. J. Biogeogr. 13: 35–57.Google Scholar
  2. Bartlein P. J., WebbIII T. & Fleri E. C., 1984. Holocene climatic change in the northern Midwest: pollen-derived estimates. Quat. Res. 22: 361–374.Google Scholar
  3. Berger A., 1978. Long term variations of daily insolation and Quaternary climatic changes. J. Atms. Sci. 35: 2362–2367.Google Scholar
  4. Berger A., Imbrie J., Hays J., Kukla G. & Saltzman B. (eds), 1984. Milankovitch and climate. Reidel, Dordrecht.Google Scholar
  5. Bernabo J. C. & WebbIII T., 1977. Changing patterns in the Holocene pollen record from northeastern North America: a mapped summary. Quat. Res. 8: 64–96.Google Scholar
  6. CLIMAP Project Members, 1981. Seasonal reconstructions of the Earth's surface at the Last Glacial Maximum. Geol. Soc. Amer. Map and Chart Series 36.Google Scholar
  7. Davis M. B., 1976. Pleistocene biogeography of temperate deciduous forests. Geosci. Man 13: 13–26.Google Scholar
  8. Davis, M. B., 1981. Outbreaks of forest pathogens in Quaternary history. IV International Palynological Conference, Lucknow (1976–77) 3: 216–227.Google Scholar
  9. Davis M. B., 1983a. Holocene vegetational history of the eastern United States. In: H. E.WrightJr (ed.), Late Quaternary environments of the United States. Vol. 2. The Holocene, pp. 166–181. University of Minnesota Press, Minneapolis.Google Scholar
  10. Davis M. B., 1983b. Quarternary history of deciduous forests of eastern North America and Europe. Ann. Missouri Bot. Gard. 70: 550–563.Google Scholar
  11. Davis M. B., Spear R. W. & Shane L. C. K., 1980. Holocene climate of New England. Quat. Res. 14: 240–250.Google Scholar
  12. Davis M. B., Woods K. D., Webb S. L. & Futyma R. B., 1986. Dispersal versus climate: expansion of Fagus and Tsuga into the upper Great Lakes region. Vegetatio 69: 93–103.Google Scholar
  13. Delcourt, H. R. & Delcourt, P. A., 1984. Late-Quaternary history of the spruce-fir ecosystem in the Southern Appalachian Mountain region. In: P. S. White & J. Wood (ed.). The southern Appalachian Spruce-Fir ecosystem: its biology and threats. U.S. Research Resource Management Report Ser-71: 22–35.Google Scholar
  14. Delcourt H. R. & Delcourt P. A., 1985. Quaternary palynology and vegetational history of the southeastern United States. In: V. M.Bryant & R. G.Holloway (eds), Pollen records of Late-Quaternary North American sediments, pp. 1–37. American Association of Stratigraphic Palynologists Foundation, Dallas.Google Scholar
  15. Denton G. H. & Hughes T. J. (eds), 1981. The last great ice sheets. J. Wiley & Sons, New York.Google Scholar
  16. Gaudreau D. C. & WebbIII T., 1985. Late-Quaternary pollen stratigraphy and isochrone maps for the northeastern United States. In: V. M.Bryant & R. G.Holloway (eds), Pollen records of Late-Quarternary North American sediments, pp. 247–280, American Association of Stratigraphic Palynologists Foundation, Dallas.Google Scholar
  17. Hays J. D., Imbrie J. & Shackleton N., 1976. Variations in the earth's orbit: pacemaker of the ice volume cycle. Science 194: 1121–1132.Google Scholar
  18. Hecht A. D. (ed.), 1985. Paleoclimate analyses and modeling. J. Wiley & Sons, New York.Google Scholar
  19. Huntley B. & Birks H. J. B., 1983. An atlas of past and present pollen maps for Europe: 0–13000 years ago. Cambridge University Press, Cambridge.Google Scholar
  20. Imbrie J. & Imbrie J. Z., 1980. Modeling the climate response to orbital variations. Science 207: 943–953.Google Scholar
  21. Imbrie J., 1985. A theoretical framework for the Pleistocene ice ages. J. Geol. Soc. London 142: 417–432.Google Scholar
  22. Kershaw K. A. & Looney J. H. H., 1985. Quantitative and dynamic plant ecology. E. Arnold Ltd., London.Google Scholar
  23. King J. E., 1973. Late Pleistocene palynology and biogeography of the western Missouri Ozarks. Ecol. Monogr. 43: 539–565.Google Scholar
  24. Kutzbach J. E., 1981. Monsoon climate of the early Holocene: climate experiment with the earth's orbital parameters for 9000 years ago. Science 214: 59–61.Google Scholar
  25. Kutzbach J. E. & Street-Perrott F. A., 1985. Milankovitch forcing of fluctuations in the level of tropical lakes from 18 to 0 kyr B.P. Nature 317: 130–134.Google Scholar
  26. Kutzbach J. E. & WrightJr H. E., 1985. Simulation of the climate of 18000 yr B.P.: results for North American/North Atlantic/European sector and comparison with the geologic record. Quat. Sci. Rev. 4: 147–187.Google Scholar
  27. Kutzbach J. E. & Guetter P. J., 1986. The influence of changing orbital parameters and surface boundary conditions on the climate simulations for the past 18000 years. J. Atms. Sci. 43: 1726–1759.Google Scholar
  28. Mueller-Dombois D. & Ellenberg H., 1974. Aims and methods of vegetation ecology. J. Wiley & Sons, New York.Google Scholar
  29. Overpeck J. T., WebbIII T. & Prentice I. C., 1985. Quantitative interpretaton of fossil pollen spectra: dissimilarity coefficients and the method of modern analogs. Quat. Res. 23: 87–108.Google Scholar
  30. Peterson G. M., 1983. Holocene vegetation and climate in the western USSR. Ph.D. Thesis, University of Wisconsin, Madison.Google Scholar
  31. Porter S. C. (ed.), 1983. Late-Quaternary environments of the United States. Vol. 1. The Late Pleistocene. Univ. of Minnesota Press, Minneapolis.Google Scholar
  32. Prentice I. C., 1983. Postglacial climatic change: vegetation and the pollen record. Progr. Phys. Geogr. 7: 273–286.Google Scholar
  33. Prentice I. C., 1986. Vegetation responses to past climatic variation mechanisms and rates. Vegetatio 67: 131–141.Google Scholar
  34. Ralska-Jasiewiczowa M., 1983. Isopollen maps for Poland: 0–11000 yr B.P., New Phytol. 94: 133–175.Google Scholar
  35. Ritchie J. C., 1976. The late-Quaternary vegetational history of the western interior of Canada. Can. J. Bot. 54: 1793–1818.Google Scholar
  36. Ritchie J. C., 1986. Vegetation-climate equilibrium in relation to palaoecology Vegetatio 67: 65–74.Google Scholar
  37. SmithJr E. N., 1985. Paleovegetation zonation and tree-species migrations in southeastern Missouri: 17110 yr B.P. to the present. Palynology 9: 253.Google Scholar
  38. Solomon A. M. & WebbIII T., 1985. Computer-aided reconstruction of late-Quaternary landscape dynamics. Ann. Rev. Ecol. Syst. 16: 63–84.Google Scholar
  39. Street F. A. & Grove A. T., 1979. Global maps of lake-level fluctuations since 30000 B.P. Quat. Res. 10: 83–118.Google Scholar
  40. VanZant K. L., WebbIII T., Peterson G. M. & Baker R. G., 1979. Increased Cannabis/Humulus pollen, an indicator of European agriculture in Iowa. Palynology 3: 229–233.Google Scholar
  41. Watts W. A., 1973. Rates of change and stability in vegetation in the perspective of long periods of time. In: H. J. B.Birks & R. G.West (eds), Quaternary plant ecology, pp. 195–206. Blackwell, Oxford.Google Scholar
  42. Watts W. A., 1983. Vegetational history of the eastern United States 25000 to 10000 years ago. In: S. C.Porter (ed.), Late-Quaternary environments of the United States. Vol. 1. The late Pleistocene, pp. 294–310. University of Minnesota Press, Minneapolis.Google Scholar
  43. Watts W. A. & Stuiver M., 1980. Late Wisconsin climate of northern Florida and the origin of species-rich deciduous forest. Science 210: 325–327.Google Scholar
  44. WebbIII T., 1982. Temporal resolution in Holocene pollen data. Third North American Paleontological Convention, Proc. 2: 569–572.Google Scholar
  45. Webb, III T., 1984. Late-Quaternary changes in climate seasonality in eastern North America. American Quaternary Association. Program and Abstracts, Boulder, CO, pp. 138–139.Google Scholar
  46. WebbIII T., 1985. A Global paleoclimate data base for 6000 yr B.P. U. S. Department of Energy Report TR-018. Department of Energy, Washington, DC.Google Scholar
  47. WebbIII T., 1986. Is vegetation in equilibrium with climate? How to interpret late-Quarternary pollen data. Vegetatio 67: 75–91.Google Scholar
  48. WebbIII T. & Bernabo J. C., 1977. The contemporary distribution and Holocene stratigraphy of pollen in eastern North America. In: W. C.Elsik (ed.), Contributions of stratigraphic palynology. Vol. 1. Cenozoic Palynology, pp. 130–146. American Association of Stratigraphic Palynologists, Contr. Ser. No. 5A, AASP Foundation, Dallas.Google Scholar
  49. WebbIII T., Howe S. E., Bradshaw R. W. H. & Heide K. M., 1981. Estimating plant abundances from pollen percentages: the use of regression analysis. Rev. Palaeobot. Palyn. 32: 269–300.Google Scholar
  50. WebbIII T., Cushing E. J. & WrightJr H. E., 1983a. Holecene changes in the vegetation of the Midwest. In: H. E.WrightJr (ed.), Late-Quaternary environments of the United States, Vol. 2, The Holecene, pp. 142–165. Univ. of Minnesota Press, Minneapolis.Google Scholar
  51. WebbIII T., Richard P. J. H. & Mott R. J., 1983b. A mapped history of Holocene vegetation in southern Quebec. Syllogeus 49: 273–336.Google Scholar
  52. Webb III, T., Bartlein, P. J. & Kutzbach, J. E., in press. Climatic change in eastern North America during the past 18000 years: comparisons of pollen data with model results. In: H. E. Wright, Jr. & W. F. Ruddiman (eds.), North America and adjacent oceans during the last deglaciation. Geol. Soc., Amer., Decade of North American Geology.Google Scholar

Copyright information

© Dr W. Junk Publishers 1987

Authors and Affiliations

  • Thompson WebbIII
    • 1
  1. 1.Department of Geological SciencesBrown UniversityProvidenceUSA

Personalised recommendations