International Journal of Fracture

, Volume 71, Issue 4, pp 345–363 | Cite as

Fracture parameters for interfacial cracks: an experimental-finite element study of crack tip fields and crack initiation toughness

  • Liming Xu
  • Hareesh V. Tippur


Crack tip measurements and analysis of interfacial parameters for PMMA-aluminum bimaterial system are presented. A variety of crack tip mode-mixities are obtained by subjecting asymmetric four-point-bend specimens to different boundary loads. The crack tip fields are mapped using the optical method of Coherent Gradient Sensing (CGS). The complex stress intensity factors and the associated crack tip mixities (ψ) are measured from CGS fringe patterns. The asymptotic expansion field for interface cracks is used for extracting fracture parameters by accounting for higher order contributions to the experimental data. The measurements are compared with complementary finite element computations. A linear relationship between crack tip mixity and the applied load mixity is experimentally demonstrated in this large elastic mismatch system. The fracture load and hence the energy release rate Gcr (ψ) at crack initiation is measured as applied load mixities are varied. Limited discussion on the influence of surface roughness prior to bonding on the fracture toughness is included. Positive and negative shear on the crack plane produce different failure responses in this bimaterial system and the observed asymmetry is akin to the one predicted by the T&H model that includes crack tip nonlinearty.


Fracture Toughness Stress Intensity Factor Crack Initiation Energy Release Rate Fracture Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.R. Rice, Journal of Applied Mechanics 55 (1988) 98–103.Google Scholar
  2. 2.
    J.W. Hutchinson and Z. Suo, Advances in Applied Mechanics 29 (1991) 63–191.Google Scholar
  3. 3.
    M.L. Williams, Bulletin of the Seismological Society of America 49(2), (1959) 199–203.Google Scholar
  4. 4.
    G.C. Sih and J. R. Rice, Journal of Applied Mechanics 32 (1965) 418–423.Google Scholar
  5. 5.
    F. Erdogan, Journal of Applied Mechanics 32 (1965) 403–410.Google Scholar
  6. 6.
    B.M. Malyshev and R.L. Salganik, International Journal of Fracture 1 (1965) 114–12.Google Scholar
  7. 7.
    M. Comninou, Journal of Applied Mechanics 44 (1977) 631–636.Google Scholar
  8. 8.
    H.C. Cao and A.G. Evans, Mechanics of Materials (1989) 295–301.Google Scholar
  9. 9.
    J.-S. Wang and Z. Suo, Acta Metallurgica 38(7), (1990) 1279–1290.Google Scholar
  10. 10.
    K.M. Liechti and Y.S. Chai, Journal of Applied Mechanics 58 (1991) 680–687.Google Scholar
  11. 11.
    N.P. O'Dowd, M.G. Stout and C.F. Shih, Philosophical Magazine A 66(6), (1992) 1037–1064.Google Scholar
  12. 12.
    H.V. Tippur and S. Ramaswamy, International Journal of Fracture 61 (1993) 247–265.Google Scholar
  13. 13.
    J.G. Williams, International Journal of Fracture 36 (1988) 101–119.Google Scholar
  14. 14.
    N.P O'Dowd, C.F. Shih and M.G. Stout, International Journal of Solids and Structures 29(5), (1992) 571–589.Google Scholar
  15. 15.
    P.G. Charalambides, J. Lund and A.G. Evans Journal of Applied Mechanics 56 (1989) 77–82.Google Scholar
  16. 16.
    H. Lu and F.P. Chiang, Journal of Applied Mechanics 60 (1993) 93–100.Google Scholar
  17. 17.
    H.V. Tippur and A.J. Rosakis, Experimental Mechanics 31(3), (1991) 243–252.Google Scholar
  18. 18.
    K.M. Liechti and W.G. Knauss, Experimental Mechanics 22 (1982) 383–391.Google Scholar
  19. 19.
    M. Charalambides, A.J. Kinloch, Y. Wang and J.G. Williams, International Journal of Fracture 54 (1992) 269–291.Google Scholar
  20. 20.
    S. Suresh, C.F. Shih, A. Morrone and N.P. O'Dowd, Journal of the American Ceramic Society 73 (1990) 1257–1267.Google Scholar
  21. 21.
    C.F. Shih and R. Asaro, Journal of Applied Mechanics 55 (1988) 299–316.Google Scholar
  22. 22.
    H.V. Tippur, S. Krishnaswamy and A.J. Rosakis, International Journal of Fracture 52 (1991) 91–117.Google Scholar
  23. 23.
    H.V. Tippur, Applied Optics 33 (1994) 4167–4170.Google Scholar
  24. 24.
    H.V. Tippur, Applied Optics 31: 2 (1992) 4428–4439.Google Scholar
  25. 25.
    Y.J. Lee and A.J. Rosakis, International Journal of Solids and Structures 30(22), (1993) 3139–3158.Google Scholar
  26. 26.
    S. Ramaswamy, H.V. Tippur and L. Xu, Experimental Mechanics 33(3), (1993) 218–227.Google Scholar
  27. 27.
    M.Y. He and J.W. Hutchinson, Journal of Applied Mechanics 56 (1989) 270.Google Scholar
  28. 28.
    M. Comminou and D. Schmueser, Journal of Applied Mechanics 46 (1979) 345–348.Google Scholar
  29. 29.
    A.G. Evans and J.W. Hutchinson, Acta Metallurgica 37 (1989) 909–916.Google Scholar
  30. 30.
    V. Tvergaard and J.W. Hutchinson, Journal of the Mechanics and Physics of Solids 41(6) (1993) 1119–1135.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Liming Xu
    • 1
  • Hareesh V. Tippur
    • 1
  1. 1.Department of Mechanical EngineeringAuburn UniversityAuburnUSA

Personalised recommendations