, Volume 67, Issue 2, pp 105–118 | Cite as

Lags in adjustment of vegetation to climate caused by the pace of soil development. Evidence from Britain

  • Winifred Pennington


In areas such as parts of Britain where many closely spaced sites have been investigated, between-site diversites prevent any simple correlation between vegetation response and climatic variables. These diversities reveal the influence of other factors in modulating this response. Analysis of profiles of allochthonous lake sediments has provided evidence for the importance of soil factors. The otherwise inexplicable spatial variation in the response of trees, in Britain and neighbouring parts of the European mainland, to the climatic warming (inferred from faunal evidence) at the most recent glacial termination, can be explained by the postulated spatial differentiation of raw skeletal soils. Differences in particle-size, composition and drainage, consistent with the spatial differentiation of pre-arboreal vegetation, would affect the water-retaining capacity of immature late-glacial soils and hence the reproductive success of tree birches. The lag in response of these to climatic amelioration appears to have varied from 500 to 1500 yr, and it seems likely that a similar lag may have characterised the early warming period of each interglacial. The coclusion must be that in this situation the degree of success of trees measured by pollen values is not a reliable indicator of palaeotem-peratures. Secondly, it appears from evidence in northern Scotland that at an ecotone between forest types, the relation between vegetation and climate is likely to be obscured except in regions of uniform soils. In areas of differentiated bedrock, the vegetation pattern is likely to have been influenced most by the effects of soil maturation processes in developing a soil mosaic.


Britain Climatic variation Palynology Soil development Vegetation response 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen S. Th., de Vries H. D. & Zagwijn W. H., 1960. Climatic change and radiocarbon dating in the Weichselian glacial of Denmark and the Netherlands. Geol. Mijnb. 39: 38–42.Google Scholar
  2. Andersen S. Th., 1957. New investigations of interglacial fresh-water deposits in Western Jutland. Eiszeitalter Gegenwart 8: 181–186.Google Scholar
  3. Atherton N. M., et al. 1967. Humic acid-I. ESR spectra of humic acids. Tetrahedron 12: 1653–1667.Google Scholar
  4. Beales P. W., 1980. The Late Devensian and Flandrian Vegetational history of Crose Mere, Shropshire. New Phytol. 85: 133–161.Google Scholar
  5. Beckett S. C., 1981. Pollen diagrams from Holderness, North Humberside. J. Biogeogr. 8: 177–198.Google Scholar
  6. Bennett K. D., 1983. Devensian late-glacial and Flandrian vegetional history at Hockham Mere, Norfolk, England. New Phytol. 95: 457–487, 489–504.Google Scholar
  7. Berglund, B., et al. 1984. Biotic response to climatic changes during the time span 13 000–10 000 B.P.-a case study from S.W. Sweden. In: N.-A. Mörner & W. Karlen (eds.), Climatic Changes on a Yearly to Millennial Basis, pp. 25–36.Google Scholar
  8. Birks H. H., 1972. Studies in the vegetational history of Scotland III. A radiocarbon-dated pollen diagram from Loch Maree, Ross and Cromarty. New Phytol. 71: 731–754.Google Scholar
  9. Birks H. H. & Mathewes R. W., 1978. Studies in the vegetational history of Scotland: V. Late Devensian and early Flandrian pollen and macrofossil stratigraphy at Abernethy Forest, Inverness-shire. New Phytol. 80: 455–484.Google Scholar
  10. Burges A. & Drover D. P., 1953. The rate of podzol development in the sands of the Woy Woy district, N.S.W. Austr. J. Bot. 1: 83–94.Google Scholar
  11. Bishop, W. W. & Coope, G. R., 1977. Stratigraphical and faunal evidence for lateglacial and early Flandrian environments in South-west Scotland. In: J. M. Gray & J. J. Lowe (eds), Studies in the Scottish lateglacial environment, pp. 61–68, Pergamon.Google Scholar
  12. Chanda S., 1965. The history of vegetation of Bröndmyra. Årb. univ. Bergen M-N 1: 1–17.Google Scholar
  13. Coope G. R., 1961. On the study of glacial and interglacial insect faunas. Proc. Linn. Soc. London 172: 62–5.Google Scholar
  14. Coope G. R., 1970. Climatic interpretations of Late Weichselian Coleoptera from the British Isles. Rev. Geogr. Phys. Geol. Dyn. 12: 149–155.Google Scholar
  15. Coope G. R., 1975. Climatic fluctuations in north west Europe since the last interglacial indicated by fossil assemblages of Coleoptera. Geol. J. Spec. Issue 6: 153–168.Google Scholar
  16. Coope G. R., 1977. Fossil coleopteran assemblages as sensitive indicators of climatic changes during the Devensian (Last) cold stage. Phil. Trans. Roy. Soc. London B, 280: 313–40.Google Scholar
  17. Coope G. R. & Brophy J. A., 1972. Late-glacial environmental changes indicated by a Coleopteran succession from Northi Wales. Boreas 1: 97–142.Google Scholar
  18. Coope G. R., Morgan A. & Osborne P. J., 1971. Fossil Coleoptera as indicators of climatic fluctuations during the Last Glaciation in Britain. Palaeogeogr., Palaeoclimatol., Palaeoecol. 10: 87–101.Google Scholar
  19. Coope G. R. & Pennington W., 1977. The Windermere Interstadial of the Late Devensian. Phil. Trans. Roy. London B 280: 337–339.Google Scholar
  20. Coope, G. R. & Joachim, M. J., 1980. Late-glacial environmental changes interpreted from fossil Coleoptera from St Bees, Cumbria, NW England. In: J. J. Lowe et al. (eds), Studies in the lateglacial of North-west Europa, pp. 55–68, Pergamon.Google Scholar
  21. Davies, W. J. & Pigott, C. D., 1982. Shade tolerance of forest trees. In: Nat. Envir. Res. Council News J. pp. 17–18.Google Scholar
  22. Elkington, T. & Jones, G., 1973. Botanical collections in: Rep. Brit. Schools Expl. Soc. 1972–3, pp. 27–31.Google Scholar
  23. Elkington T. T. & Jones B. M. G., 1974. Biomass and primary productivity of birch (Betula pubescens s. lat.) in south-west Greenland. J. Ecol. 62: 821–830.Google Scholar
  24. Faegri K., 1953. On the peri-glacial flora of Jaeren. Norsk Geogr. Tidsskr. 14: 61–76.Google Scholar
  25. Faegri K., 1933. über die Längenvariationen einiger Gletscher des Jostedalsbre und die dadurch bedingten Pflanzen sukzessionen. Bergens Mus. Årb. Nat. R. 7: 1–255.Google Scholar
  26. Faanks J. W. & Pennington W., 1961. The late-glacial and postglacial deposits of the Eastwaite basin, North Lancashire. New Phytol. 60: 27–42.Google Scholar
  27. Godwin H., 1960. Radiocarbon dating and Quaternary history in Britain. Proc. Roy. Soc. London B 153: 287–320.Google Scholar
  28. Godwin H., 1975. History of the British Flora, Cambridge University Press, Cambridge.Google Scholar
  29. GreatRex P. A., 1983. Interpretation of macrofossil assemblages from surface sampling of macroscopic plant remains in mire communities. J. Ecol. 71: 773–791.Google Scholar
  30. Hulten E., 1971. Atlas över växternas utbredning i Norden. Generalstabens Litografiska Anstalts Förlag, Stockholm.Google Scholar
  31. Hunt T. G. & Birks H. J. B., 1982. Devensian late-glacial vegetational history at Sea mere, Norfolk. J. Biogeogr. 9: 517–538.Google Scholar
  32. Huntley, B. & Birks, H. J. B., 1983. An atlas of past and present pollen maps for Europe: 0–13 000 years ago. Cambridge University Press. 667 pp. + maps.Google Scholar
  33. Iversen J., 1954. The late-glacial flora of Denmark and its relation to climate and soil. Danm. Geol. Unders. II, 80: 87–119.Google Scholar
  34. Iversen J., 1958. The bearing of glacial and interglacial epochs on the formation and extinction of plant taxa. Upps. Univ. Årsskr. 6: 210–215.Google Scholar
  35. Iversen J., 1973. The development of Denmark's Nature since the last glacial. Danmarks Geol. Unders. II, 7c: 1–125.Google Scholar
  36. Jacobson G. L.Jr. & Birks H. J. B., 1980. Soil development on recent end moraines of the Klutlan Glacier, Yukon Territory, Canada. Quat. Res. 14: 87–100.Google Scholar
  37. Kinnaird J. W., 1974. Effect of site conditions on the regeneration of birch (Betula pendula Roth. and B. pubescens Ehrh.). J. Ecol. 62: 467–472.Google Scholar
  38. Larsen E., Fröydis E., Longva O. & Mangerud J., 1984. Alleröd-Younger Dryas climatic inferences from cirque glaciers and vegetational development in the Nordfjord area, western Norway. Arct. Alp. Res. 16: 137–160.Google Scholar
  39. Lowe, J. J. & Walker, M. J. C., 1977. The reconstruction of the late-glacial environment in the southern and eastern Grampiand Highlands. In: J. M. Gray & J. J. Lowe (eds), Studies in the Scottish lateglacial environment, pp. 101–118, Pergamon.Google Scholar
  40. Mackereth F. J. H., 1966. Some chemical observations on postglacial lake sediments. Phil. Trans. Roy. Soc. London B 250: 165–213.Google Scholar
  41. Mangerud J. & Gulliksen S., 1975. Apparent radiocarbon ages of recent marine shells from Norway, Spitzbergen and Arctic Canada. Quat. Res. 5: 263–274.Google Scholar
  42. McVean, D. N., 1964. Chapters 16 & 17 In: J. H. Burnett (ed.), The Vegetation of Scotland, Oliver & Boyd, Ltd. 613 pp.Google Scholar
  43. McVean D. N. & Ratcliffe D. A., 1962. Plant communities of the Scottish Highlands. H.M.S.O. London.Google Scholar
  44. Pennington W., 1943. Lake sediments: the bottom deposits of the North Basin of Windermere, with special reference to the diatom succession. New Phytol. 42: 1–27.Google Scholar
  45. Pennington W., 1947. Lake sediments: pollen diagrams from the bottom deposits of the North Basin of Windermere. Phil. Trans. Roy. Soc. London B, 233: 137–175.Google Scholar
  46. Pennington W., 1964. Pollen analyses from the deposits of six upland tarns in the Lake District. Phil. Trans. Roy. Soc. London B, 248: 205–244.Google Scholar
  47. Pennington, W., 1970. Vegetation history in the north-west of England: a regional synthesis. In. D. Walker & R. G. West (eds), Studies in the vegetational history of the British Isles, pp. 41–79, Cambridge University Press.Google Scholar
  48. Pennington W., 1973. Absolute pollen frequencies in the sediments of lakes of different morphometry. In: H. J. B. Birks & R. G. West (eds), Quaternary Plant Ecology. pp. 79–104, Blackwell Scientific Publications, Oxford.Google Scholar
  49. Pennington W., 1975. A chronostratigraphic comparison of Late-Weichselian and Late-Devensian subdivisions, illustrated by two radiocarbon-dated profiles from western Britain. Boreas 4: 157–171.Google Scholar
  50. Pennington W., 1977. The Late Devensian flora and vegetation of Britain. Phil. Trans. Roy. Sco. Lond. B, 280: 247–271.Google Scholar
  51. Pennington W., 1981. The representation of Betula in the Late Devensian deposits of Windermere, England. Striae 14: 83–87, Uppsala.Google Scholar
  52. Pennington W. & Lishman J. P., 1971. Iodine in lake sediments in northern England and Scotland. Biol. Rev. Cambridge Phil. Soc. 46: 279–313.Google Scholar
  53. Pennington W., Haworth E. Y., Bonny A. P. & Lishman J. P., 1971. Lake sediments in northern Scotland. Phil. Trans. Roy. Soc. London B, 264: 191–294.Google Scholar
  54. Pearsall, W. H., 1950. Mountains and Moorlands. Collins.Google Scholar
  55. Perring F. & Walters S. M., 1962. Atlas of the British Flora. Botanical Society of the British Isles; Nelson.Google Scholar
  56. Persson, A., 1964. The vegetation at the margin of the retreating glacier Skaftafellsjökull, south-eastern Iceland. Bot. Not. 117.Google Scholar
  57. Ruddiman W. F. & McIntyre A., 1973. Time-transgressive deglacial retreat of Polar water from the North Atlantic. Quat. Res. 3: 117–130.Google Scholar
  58. Ruddiman W. F., Sancetta C. D. & McIntyre A., 1977. Glacial/interglacial response rate of subpolar North Atlantic waters to climatic change: the record left in deep-sea sediments. Phil. Trans. Roy. Soc. London B, 280: 119–142.Google Scholar
  59. Ruddiman W. F. & McIntyre A., 1981. The North Atlantic ocean during the last deglaciation. Palaeogeogr., Palaeoclimatol., Palaeoecol. 35: 145–214.Google Scholar
  60. Salisbury E. J., 1926. The geographical distribution of plants in relation to climatic factors. Geogr. J. 57: 312–335.Google Scholar
  61. Simpkins K. (Mrs Gee), 1974. The late-glacial deposits at Glannllynnau, Caernarvonshire. New Phytol. 73, 605–618.Google Scholar
  62. Sissons J. B., 1980. The Loch Lomond Advance in the Lake District, northern England. Trans. Roy. Soc. Endinb. 71: 13–17.Google Scholar
  63. Suggate R. P. & West R. G., 1959. On the extent of the last glaciation in Eastern England. Proc. Roy. Soc. London B, 150: 263–283.Google Scholar
  64. Steven H. M. & Carlisle A., 1959. The native pinewoods of Scotland. Oliver & Boyd. Edinburgh.Google Scholar
  65. Sutherland, D. G., 1980. Problems of radiocarbon dating deposits from newly glaciated terrain: examples from the Scottish Lateglacial. In: J. J. Lowe, J. M. Gray & J. E. Robinson (eds), Studies in the Lateglacial of North-west Europe, pp. 139–149. Pergamon.Google Scholar
  66. Tansley, A. G., 1939. The British Islands and their Vegetation. Cambridge University Press, 930 pp.Google Scholar
  67. Van der Hammen T., et al. 1967. Stratigraphy, climatic succession and radiocarbon dating of the last glacial in the Netherlands. Geol. Mijnb. 46: 79–95.Google Scholar
  68. Van Geel B., Bohncke S. J. P. & Dee H., 1981. A palaeoecological study of an upper late glacial and Holocene sequence from ‘De Borchert’, The Netherlands. Rev. Palaeobot. Palynol. 31: 367–448.Google Scholar
  69. Watts, W. A., 1973. Rates of change and stability in vegetation in the perspective of long periods of time. In: Quaternary Plant Ecology, edit. H. J. B. Birks & R. G. West, pp. 195–206. Blackwell Scientific Publications.Google Scholar
  70. Walker D., 1966. The Late Quaternary history of the Cumberland lowland. Phil. Trans. Roy. Soc. London B, 251: 1–210.Google Scholar
  71. Wright H. E., 1984. Sensitivity and response time of natural systems to climatic change in the late Quaternary. Quat. Sci Rev. 3: 91–131.Google Scholar

Copyright information

© Dr W. Junk Publishers 1986

Authors and Affiliations

  • Winifred Pennington
    • 1
  1. 1.Department of BotanyUniversity of LeicesterLeicesterEngland

Personalised recommendations