, Volume 67, Issue 2, pp 93–103 | Cite as

Dispersal versus climate: Expansion of Fagus and Tsuga into the Upper Great Lakes region

  • M. B. Davis
  • K. D. Woods
  • S. L. Webb
  • R. P. Futyma


Pollen records for American beech (Fagus grandifolia) and eastern hemlock (Tsuga canadensis) compiled from 50 sites in Michigan and Wisconsin, USA, show that both species entered the Upper Great Lakes region about 7000 yr B.P., reaching their western and southwestern boundaries between 2000 and 1000 yr B.P. Fagus advanced northward into lower Michigan as a continuous front, except where Lake Michigan posed a geographic barrier. Colonies were established on the far side of the lake after a 1000 year lag, implying that longdistance dispersal across a 100-km wide barrier can occur. The Fagus range may not have been in equilibrium with climate for one or two thousand years before this time, when seeds were dispersed across the lake to Wisconsin. Tsuga seeds may have been dispersed 150 km or more from Ontario to reach Upper Michigan. Scattered colonies were established 6000–7000 yr B.P. on either side of Lake Michigan, which did not pose a significant barrier to this wind-dispersed species, Tsuga spread rapidly over a large region prior to 5000 yr B.P. Subsequent expansion to the west occurred more slowly, and may reflect gradual climatic changes in northern Wisconsin during the second half of the Holocene. Tsuga's range may have been limited by dispersal, rather than climate, for an unknown length of time prior to 5000 yr B.P. During this period Tsuga was expanding its range rapidly. The study shows, however, that it is difficult to devise rigorous tests to distinguish between dispersal limitations and climate as factors limiting range limits in the past.


Climatic change Fagus grandifolia Great Lakes region Holocene Palynology Range extension Range limits Seed dispersal Tsuga canadensis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allison, T., Moeller, R. E. & Davis, M. B., 1986. Pollen in laminated sediments provides evidence for a mid-Holocene forst pathogen outbreak. Ecology, in press.Google Scholar
  2. Bailey R. E., 1972. Vegetation history of northwest Indiana. Ph.D. Thesis, Indiana University, Bloomington, Indiana.Google Scholar
  3. Bailey R. E., 1977. Pollen stratigraphy of Wintergreen Lake. In R. O. Kapp (ed.) ‘Handbook for Paleoecology Field Trip in Central Lower Michigan’. Ecol. Soc. Amer., AIBS, East Lansing, MI.Google Scholar
  4. Bernabo J. C., 1981. Quantitative estimates of temperature changes over the last 2700 years in Michigan based on pollen data. Quat. Res. 15: 143–159.Google Scholar
  5. Broecker W. S. & Walton A., 1959. The geochemistry of C14 in freshwater systems. Geochem. Cosmochim. Acta 16: 15–38.Google Scholar
  6. Brubaker L. B., 1975. Post-glacial forest patterns associated with till and outwash in Northcentral Upper Michigan. Quat. Res. 5: 499–527.Google Scholar
  7. Davis A. M., 1977. The prairie-decidous forest ecotone in the upper Middle West. Ann. Assoc. Amer. Geogr. 67: 204–213.Google Scholar
  8. Davis M. B., 1976. Pleistocene biogeography of temperate deciduous forests. Geoscience and Man 13: 13–26.Google Scholar
  9. Davis M. B., 1981a. Quaternary history and the stability of deciduous forests. In D. C. West, H. H. Shugart & D. B. Botkin, (eds.) ‘Forest Succession’, p. 132–177. Springer-Verlag, N.Y..Google Scholar
  10. Davis M. B., 1981b. Outbreaks of forest pathogens in Quaternary history. Proc. 4th Int. Palynol. Conf. Lucknow, India 3: 216–227.Google Scholar
  11. Davis M. B., 1983a. Holocene vegetation history of the eastern United States. In:H. E. Wright (ed.) ‘Late-Quaternary Environments of the United States. Vol. 2, The Holocene’, p. 166–181. Univ. of Minnesota Press, Minneapolis.Google Scholar
  12. Davis M. B., 1983b. Quaternary history of deciduous forests of eastern North America and Europe. Ann. Missouri Bot. Gard. 20: 550–563.Google Scholar
  13. Davis, M. B., Schwartz, M. W., Woods, K. D. & Webb, S. L., 1986. Detecting beech and hemlock species limits from pollen in sediment. AMQUA Abstr. (1986) p. 76.Google Scholar
  14. Deevey E. S.Jr., Gross M. S., Hutchinson G. E. & Kraybill H. L., 1954. The natural C14 contents of materials from hard-water lakes. Nat. Acad. Sci. Proc. 40: 285–258.Google Scholar
  15. Farrand W. R. & Bell D. L., 1982. Quaternary geology of northern Michigan. Map, 1:500,000, MI Dept. Nat. Res., Geological Survey, Lansing.Google Scholar
  16. Fowells H. A., 1965. Silvics of forest trees of the United States. U.S. Dept. of Agriculture, Agr. Handbook 271, U.S. Govt. Printing Office, Washington, D.C.Google Scholar
  17. Futyma R. P., 1982. Postglacial vegetation of eastern Upper Michigan. Ph.D. thesis, University of Michigan, Ann Arbor, Michigan. 426 pp.Google Scholar
  18. Gilliam J. A., Kapp R. O. & Bogue R. D., 1967. A post-Wisconsin pollen sequence from Vestaburg Bog, Montcalm County, Michigan. Michigan Acad. Sci., Arts Lett 52: 3–17.Google Scholar
  19. Heide K. M., 1984. Holocene pollen stratigraphy from a lake and small hollow in north-central Wisconsin, USA. Palynology 8: 3–20.Google Scholar
  20. Huntley B. & Birks H. J. B. 1983. An atlas of past and present pollen for Europe 0–13,000 years ago. Cambridge Univ. Press. Cambridge.Google Scholar
  21. Iversen, J., 1954. The late-glacial flora of Denmark and its relation to climate and soil. Danmarks Geol. Unders. Ser. II, No. 80, p. 87–119.Google Scholar
  22. Jacobson G. L., 1979. The paleoecology of white pine (Pinus strobus) in Minnesota. J. Ecol. 67: 697–726.Google Scholar
  23. Johnson, W., 1976. Impact of environmental change on fluvial systems: Kickapoo River, Wisconsin. Ph.D. diss., University of Wisconsin, Madison.Google Scholar
  24. Johnson W. C. & Adkisson C. S., 1986. Dispersal of beech nuts by blue jays in fragmented landscapes. Am. Midl. Nat. 13: 319–324.Google Scholar
  25. Kapp R. O., 1977. Late Pleistocene and post-glacial plant communities of the Great Lakes Region. In R. C. Romans (ed.), ‘Geobotany’, p. 1–27, Plenum, New York.Google Scholar
  26. Kapp, R. O., Bushouse, S. & Foster, B., 1969. A contribution to the geology and forest history of Beaver Island, Michigan. Proc. 12th Conf. Great Lakes Research 1969, p. 225–236.Google Scholar
  27. Kerfoot W. C., 1974. Net accumulation rates and the history of cladoceron communities. Ecology 55: 51–61.Google Scholar
  28. King J. E., 1981. Late Quaternary vegetational history of Illinois. Ecol. Monogr. 51: 43–62.Google Scholar
  29. Lawrenz, R. W., 1975. The development of Green Lake, Antrim Country, Nucgugan, Michigan. M.S. Thesis. Central Michigan University, Mount Pleasant, Michigan.Google Scholar
  30. Liu, K., 1982. Palynology and paleoecology of the boreal forest/Great Lakes-St. Lawrence forest ecotone in northern Ontario. AMQUA Abstracts (1982) p. 122.Google Scholar
  31. Maher, L. J., Jr. 1982. The palynology of Devil's Lake, Sauk County, Wisconsin. In Quaternary History of the Driftless Area, Fieldtrip Guide Book 5, p. 119–135, Univ. Wisc. Ext. Geol. and Natl. History Survey.Google Scholar
  32. Manny B. A., Wetzel R. G. & Bailey R. E., 1978. Paleolimnological sedimentation of organic carbon, nitrogen, phosphorous, fossil pigments, pollen, and diatoms in a hypereutrophic, hardwater Lake: A case history of eutrophication. Polsk. Arch. Hydrobiol. 25: 243–267.Google Scholar
  33. McAndrews J. H., 1970. Fossil pollen and our changing landscape and climate. Rotunda 3: 30–37.Google Scholar
  34. McAndrews, J. H., 1981. Late Quaternary climate of Ontario: temperature trends from the fossil record. In W. C. Mahaney (ed.), Quaternary Paleoclimate. Geoabstracts Ltd.Google Scholar
  35. Pennington W. (Mrs T. G. Tutin), 1986. Lags in adjustment of vegetation to climate caused by the pace of soil development. Evidence from Britain. Vegetatio 67: 105–118.Google Scholar
  36. Peters, A. & Webb III, T., 1979. A radiocarbon-dated pollen diagram from west-central Wisconsin. Bull. Ecol. Soc. Amer. 60, p. 102.Google Scholar
  37. Ridley H. N., 1930. The dispersal of plants throughout the world. Reeve, Ashford.Google Scholar
  38. Ritchie J. C., 1986. Climate change and vegetation response. Vegetatio 67: 65–74.Google Scholar
  39. Schwartz, M. W., 1985. A critical investigation of regression Techniques and data collection methods to improve estimates of the pollen/tree relationship. M.S. Thesis, University of Minnesota, Minneapolis.Google Scholar
  40. Swain A. M., 1978. Environmental changes during the last 2000 years in north-central Wisconsin: Analysis of pollen, charcoal and seeds from varied lake sediments. Quat. Res. 10: 55–68.Google Scholar
  41. Ward R. T., 1956. The beech forests of Wisconsin-changes in forest composition and the nature of the beech border. Ecology 37: 407–419.Google Scholar
  42. Ward R. T., 1958. The beech forests of Wisconsin-their phytosociology and relationships to forests in the state without beech. Ecology 39: 444–457.Google Scholar
  43. Ward R. T., 1961. Some aspects of the regeneration habits of American beech. Ecology 42: 828–832.Google Scholar
  44. Webb, S. L., 1983. The Holocene extension of the range of American beech (Fagus grandifolia) into Wisconsin: paleoecological evidence for long-distance seed dispersal. M.S. thesis, University of Minnesota, Minneapolis.Google Scholar
  45. Webb, S. L., 1986. Potential role of passenger pigeons and other vertebrates in the rapid Holocene migrations of nut trees. Quat. Res., in press.Google Scholar
  46. WebbIII T., 1974. A vegetation history from northern Wisconsin: Evidence from modern and fossil pollen. Amer. Midland Nat. 92: 12–34.Google Scholar
  47. Webb III, T., 1982. Temporal resolution in Holecene pollen data. In Proceedings Third North American Paleontological convention, Vol. 2, p. 569–572.Google Scholar
  48. WebbIII T., 1986. Is vegetation in equilibrium with climate? How to interpret late-Quaternary pollen data. Vegetatio 67: 75–91.Google Scholar
  49. WebbIII T., Howe S. E., Bradshaw R. H. W. & Heide K. M., 1981. Estimating plant abundances from pollen percentages: The use of regression analysis. Rev. Paleobot. Palyn. 34: 269–300.Google Scholar
  50. WebbIII T., Cushing E. J. & Wright H. E.Jr. 1983. Holocene changes in the vegetation of the midwest. In H. E. WrightJr. (ed.) ‘Late-Quaternary Environments of the United States, Vol. 2, The Holocene’, p. 142–165. Univ. of Minnesota Press, Minneapolis.Google Scholar
  51. West R. G., 1961. Late and post-glacial vegetational history in Wisconsin, particularly changes associated with the Valders readvance. Amer. J. Sci. 259: 766–783.Google Scholar
  52. Woods, K. D. & Davis, M. B., 1982. Sensitivity of Michigan pollen diagrams to Little Ice Age climatic changes. AMQUA Abstr. (1982) p. 181.Google Scholar

Copyright information

© Dr W. Junk Publishers 1986

Authors and Affiliations

  • M. B. Davis
    • 1
  • K. D. Woods
    • 1
  • S. L. Webb
    • 1
  • R. P. Futyma
    • 1
  1. 1.Department of Ecology and Behavioral BiologyUniversity of MinnesotaMinneapolisUSA

Personalised recommendations