, Volume 67, Issue 2, pp 75–91 | Cite as

Is vegetation in equilibrium with climate? How to interpret late-Quaternary pollen data

  • Thompson WebbIII


Current methods for estimating past climatic patterns from pollen data require that the vegetation be in dynamic equilibrium with the climate. Because climate varies continuously on all time scales, judgement about equilibrium conditions must be made separately for each frequency band (i.e. time scale) of climatic change. For equilibrium conditions to exist between vegetation and climatic changes at a particular time scale, the climatic response time of the vegetation must be small compared to the time scale of climatic variation to which it is responding. The time required for vegetation to respond completely to climatic forcing at a time scale of 104 yr is still unknown, but records of the vegetational response to climatic events of 500-to 1000-yr duration provide evidence for relatively short response times. Independent estimates for the possible patterns and timing of late-Quaternary climate changes suggest that much of the vegetational evidence previously interpreted as resulting from disequilibrium conditions can instead be interpreted as resulting from the individualistic response of plant taxa to the different regional patterns of temperature and precipitation change. The differences among taxa in their response to climate can lead a) to rates and direction of plant-population movements that differ among taxa and b) to fossil assemblages that differ from any modern assemblage. An example of late-Holocene vegetational change in southern Quebec illustrates how separate changes in summer and winter climates may explain the simultaneous expansion of spruce (Picea) populations southward and beech (Fagus) populations northward.


Climatic change Equilibrium Fagus Late-Quaternary Palynology Picea Quebec 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson T. W., 1974. The chestnut pollen decline as a time horizon in lake sediments in eastern North America. Can. J. Earth Sci. 11: 678–685.Google Scholar
  2. Bartlein P. J., Prentice I. C. & WebbIII T., 1986. Climatic response surfaces based on pollen from some eastern North America taxa. J. Biogeogr. 13: 35–57.Google Scholar
  3. Bartlein P. J., WebbIII T. & Fleri E. C., 1984. Holocene climatic change in the Northern Midwest: pollen-derived estimates. Quat. Res. 22: 361–374.Google Scholar
  4. Bennett K. D., 1984. The post-glacial history of Pinus sylvestris in the British Isles. Quat. Sci. Rev. 3: 133–155.Google Scholar
  5. Berger A. L., 1981. The astronomical theory of paleoclimates. In: A. Berger (ed.), Climatic Variations and Variability: Facts and Theories, pp. 501–525. Reidel, Dordrecht.Google Scholar
  6. Bernabo J. C., 1978. Proxy data: nature's records of past climates. Environmental Data Service, NOAA, U.S. Department of Commerce, Washington, D.C. pp. 1–8.Google Scholar
  7. Bernabo J. C., 1981. Quantitative estimates of temperature changes over the last 2700 years in Michigan based on pollen data. Quat. Res. 15: 143–159.Google Scholar
  8. Bernabo J. C. & WebbIII T., 1977. Changing patterns in the Holocene pollen record from northeastern North America: a mapped summary. Quat. Res. 8: 64–96.Google Scholar
  9. Birks H. J. B., 1981. The use of pollen analysis in the reconstruction of past climates: a review. In: T. M. L. Wigley, M. J. Ingram & G. Farmer (eds), Climate and History, pp. 111–138. Cambridge University Press, Cambridge.Google Scholar
  10. Blasing T. J. & Fritts H. C., 1977. Reconstructing past climatic anomalies in the North Pacific and western North America from tree ring data. Quat. Res. 6: 563–579.Google Scholar
  11. Bradshaw R. H. W. & WebbIII T., 1985. Relationships between contemporary pollen and vegetation data from Wisconsin and Michigan, USA. Ecology 66: 721–737.Google Scholar
  12. Brubaker L. B., 1975. Postglacial forest patterns associated with till and outwash in northcentral upper Michigan. Quat. Res. 5: 499–527.Google Scholar
  13. Bryson R. A. & Wendland W. M., 1967. Tentative climatic patterns for some late glacial and postglacial episodes in central North America. In: W. J. Mayer-Oakes (ed.), Life, Land, and Water, pp. 271–289. University of Manitoba Press, Winnipeg.Google Scholar
  14. Burke M. L., Gusta L. V., Quamme H. A., Weiser C. J. & Li P. H., 1976. Freezing injury in plants. Ann. Rev. Plant Physiol. 27: 507–528.Google Scholar
  15. ChapinIII F. S. & Shaver G. R., 1985. Individualistic growth response of tundra plant species to environmental manipulations in the field. Ecology 66: 564–576.Google Scholar
  16. Chorley R. J. & Kennedy B. B., 1971. Physical geography a systems approach. Prentice Hall International, Inc., London.Google Scholar
  17. Clark W. C., 1985. Scales of climate impacts. Climatic Change 7: 5–27.Google Scholar
  18. CLIMAP Project Members, 1981. Seasonal reconstructions of the earth's surface at the last glacial maximum. GSA Map and Chart Series MC-36, 1–18.Google Scholar
  19. Cooper W. S., 1931. A third expedition to Glacier Bay, Alaska. Ecology 12: 61–95.Google Scholar
  20. Cooper W. S., 1939. A fourth expedition to Glacier Bay, Alaska. Ecology 20: 130–155.Google Scholar
  21. Darley-Hill S. & Johnson W. C., 1981. Acorn dispersal by the blue jay (Crynocitta cristata). Oecologia 50: 231–232.Google Scholar
  22. Davis M. B., 1976. Pleistocene biogeography of temperate deciduous forests. Geoscience and Man 13: 13–26.Google Scholar
  23. Davis M. B., 1978. Climatic interpretation of pollen in Quaternary sediments. In: D. Walker & J. D. Guppy (eds), Biology and Quaternary Environments, pp. 35–51. Australian Academy of Sciences, Canberra.Google Scholar
  24. Davis M. B., 1981a. Quaternary history and the stability of forest communities. In: D. C. West, H. H. Shugart & D. B. Botkin (eds), Forest succession concepts and application, pp. 132–153, Springer-Verlag, New York.Google Scholar
  25. Davis M. B., 1981b. Outbreaks of forest pathogens in Quaternary history. Proc. 4th Int. Palynol. Conf. Lucknow, India 3: 216–227.Google Scholar
  26. Davis M. B., 1983. Holocene vegetational history of the eastern United States. In: H. E. WrightJr. (ed.), Late Quaternary Environments of the United States. Vol. 2. The Holocene, pp. 166–181. University of Minnesota Press, Minneapolis.Google Scholar
  27. Davis M. B. & Botkin D. B., 1985. Sensitivity of the fossil pollen record to sudden climatic change. Quat. Res. 23: 327–340.Google Scholar
  28. Davis M. B., Spear R. W. & Shane L. C. K., 1980. Holocene climate of New England. Quat. Res. 14: 240–250.Google Scholar
  29. Delcourt P. A. & Delcourt H. R., 1983. Late-Quaternary vegetational dynamics and community stability reconsidered. Quat. Res. 19: 265–271.Google Scholar
  30. Delcourt H. R., Delcourt P. A. & WebbIII T., 1983. Dynamic plant ecology: the spectrum of vegetational change in space and time. Quat. Sci. Rev. 1: 153–175.Google Scholar
  31. Delcourt P. A., Delcourt H. R. & WebbIII T., 1984. Atlas of mapped distributions of dominance and modern pollen percentages for important tree taxa of eastern North America. AASP Contribution Series No. 14, American Association of Stratigraphic Palynologists Foundation, Dallas, TX. 131 pp.Google Scholar
  32. Diaz H. F. & Quayle R. G., 1980. The climate of the United States since 1895: spatial and temporal changes. Mon. Weath. Rev. 108: 249–266.Google Scholar
  33. Enright J. T., 1976. Climate and population regulation: the biogeographer's dilemma. Oecologia 24: 275–310.Google Scholar
  34. Gaudreau, D. C., 1986. Late-Quaternary vegetational history of the Northeast: paleoecological implications of topographic patterns in pollen distributions. Unpublished Ph.D. Thesis, Yale University.Google Scholar
  35. Good R. D'O., 1931. A theory of plant geography. New Phytol. 30: 11–171.Google Scholar
  36. Grimm E. C., 1983. Chronology and dynamics of vegetational change in the prairie woodland region of southern Minnesota, north-central U.S.A. New Phytol. 93: 311–349.Google Scholar
  37. Howe S. E. & WebbIII T., 1983. Calibrating pollen data in climatic terms: improving the methods. Quat. Sci. Rev. 2: 17–51.Google Scholar
  38. Heusser C. J., Heusser L. E. & Peteet D. M., 1985. Late-Quaternary climatic change on the American North Pacific Coast. Nature 315: 485–487.Google Scholar
  39. Imbrie J., 1985. The future of paleoclimatology. In: A. D. Hecht (ed.), Paleoclimate analysis and modeling, pp. 423–432. J. Wiley and Sons, Inc., New York.Google Scholar
  40. Imbrie J. & Kipp N. G., 1971. A new micropaleontological method for quantitative paleoclimatology: application to a late Pleistocene Caribbean core, In: K. Turekian (ed.), Late Cenozoic Glacial Ages, pp. 71–181, Yale University Press, New Haven, CT.Google Scholar
  41. Imbrie J. & Imbrie J. Z., 1980. Modeling the climatic response to orbital variations. Science 207: 943–953.Google Scholar
  42. Iversen J., 1973. The development of Denmark's nature since the Last Glacial. Geological Survey of Denmark. V. Series. No. 7-C. C. A. Reitzels Forlag, Copenhagen, 126 pp.Google Scholar
  43. JacobsonJr G. L. & Birks H. J. B., 1980. Soil development on recent end moraines of the Klutlan Glacier, Yukon Territory, Canada. Quat. Res. 14: 87–100.Google Scholar
  44. JacobsenJr G. L. & Bradshaw R. H. W., 1981. The selection of sites for paleoenvironmental studies. Quat. Res. 16: 80–96.Google Scholar
  45. Johnson W. C. & Adkisson C. S., 1986. Dispersal of beech nuts by blue jays in fragmented landscapes. Am. Midl. Nat. 13: 319–324.Google Scholar
  46. Kutzbach J. E., 1976. The nature of climate and climatic variations. Quat. Res. 6: 471–480.Google Scholar
  47. Kutzbach J. E., 1981. Monsoon climate of the early Holocene: climate experiment with the earth's orbital parameters for 9000 years ago. Science 214: 59–61.Google Scholar
  48. Kutzbach J. E. & Guetter P. J., 1984. Sensitivity of late-glacial and Holocene climates to the combined effects of orbital parameter changes and lower boundary condition changes: snapshot simulations with a general circulation model for 18 000, 9 000, and 6 000 years ago. Ann. Glaciol. 5: 85–87.Google Scholar
  49. Kutzbach J. E. & Otto-Bliesner B., 1982. The sensitivity of the African-Asian monsoonal climate to orbital parameter changes for 9 000 years B.P. in a low-resolution general circulation model. J. Atmos. Sci. 39: 1177–1188.Google Scholar
  50. Kutzbach J. E. & WrightJr H. E., 1985. Simulation of the climate of 18 000 yr B.P.: results for the North American/North Atlantic/European sector and comparison with the geologic record of North America. Quat. Sci. Rev. 4: 147–187.Google Scholar
  51. LittleJr E. L., 1971. Atlas of United States trees, Volume 1. Conifers and important hardwoods. Miscellaneous Publication No. 1146, United States Department of Agriculture Forest Service, Washington, D.C.Google Scholar
  52. McAndrews J. H., 1968. Pollen evidence for the prehistoric development of the ‘Big Woods’ in Minnesota (U.S.A.). Rev. Palaebot. Palyn. 7: 201–211.Google Scholar
  53. Middleton W. E. K., 1941. Meteorological Instruments, 2nd ed. University of Toronto Press, Toronto.Google Scholar
  54. Mitchell J. M.Jr, 1976. An overview of climatic variability and its causal mechanisms. Quat. Res. 6: 481–493.Google Scholar
  55. National Research Council: Committee for the Global Atmospheric Research Program, 1975. Understanding climatic change: a program for action. National Academy of Sciences, Washington, D.C.Google Scholar
  56. Overpeck J. T., WebbIII T. & Prentice I. C., 1985. Quantitative interpretation of fossil pollen spectra: dissimilarity coefficients and the method of modern analogs. Quat. Res. 23: 87–108.Google Scholar
  57. Pennington W. (Mrs T. G. Tutin), 1986. Lags in adjustment of vegetation to climate caused by the pace of soil development. Evidence from Britain. Vegetatio 67: 105–118.Google Scholar
  58. Peterson G. M., WebbIII T., Kutzbach J. E., van der Hammen T., Wijmstra T. A. & Street F. A., 1979. The continental record of environmental conditons at 18 000 B.P.: an initial evaluation. Quat. Res. 12: 47–82.Google Scholar
  59. Prell W. L., 1984, Monsoonal climate of the Arabian Sea during solar radiation. In: J. Hansen & T. Takahashi (eds). Climate processes and climate sensitivity, pp. 48–57. Geophys. Mono. 29, Am. Geophys. Union, Washington, D.C.Google Scholar
  60. Prentice I. C., 1983. Postglacial climatic change: vegetation dynamics and the pollen record. Prog. Phys. Geog. 7: 273–286.Google Scholar
  61. Reitan, C. H., 1971. An assessment of the role of volcanic dust determining modern changes in the temperature of the northern hemisphere. Ph.D. Thesis, University of Wisconsin-Madison, 147 pp.Google Scholar
  62. Reitan C. H., 1974. A climatic model of solar radiation and temperature change. Quat. Res. 4: 25–38.Google Scholar
  63. Ritchie J. C., 1986. Climate change and vegetation response. Vegetatio 67: 65–74.Google Scholar
  64. Ritchie J. C., Cwynar L. C. & Spear R. W., 1983. Evidence from north-west Canada for an early Holocene Milankovitch thermal maximum. Nature 305: 126–128.Google Scholar
  65. Smith G. I. & Street-Perrott F. A., 1983. Pluvial lakes of the western United States. In: S. C. Porter (ed.), Late-Quaternary Environments of the United States, Vol. 1, The Late Pleistocene, pp. 190–212. University of Minnesota Press, Minneapolis.Google Scholar
  66. Solomon A. M. & WebbIII T., 1985. Computer aided reconstruction of late-Quaternary landscape dynamics. Ann. Rev. Ecol. Sys. 16: 63–84.Google Scholar
  67. Street F. A. & Grove A. T., 1979. Global maps of lake-level fluctuations since 30 000 yr B.P. Quat. Res. 12: 83–118.Google Scholar
  68. Street-Perrott F. A. & Harrison S., 1984. Temporal variations in lake levels since 30 000 yr B.P. — an index of the global hydrological cycle. In: J. E. Hansen & T. Takahashi (eds), Climate processes and climate sensitivity, pp. 118–129. Geophys. Monogr. 29, American Geophysical Union, Washington, D.C.Google Scholar
  69. Swain A. M., 1978. Environmental changes during the past 2000 years in northcentral Wisconsin: analysis of pollen, charcoal, and seeds from varved lake sediments. Quat. Res. 10: 55–68.Google Scholar
  70. Vander Wall S. B. & Balda R. P., 1977. Coadaptations of Clark's nutcracker and the piñon pine for efficient seed harvests and dispersal. Ecol. Monogr. 47: 89–111.Google Scholar
  71. Waddington J. C. B., 1969. A stratigraphic record of the pollen influx to a lake in the Big Woods of Minnesota. Geol. Soc. Am. Spe. Papers 123: 263–282.Google Scholar
  72. WebbIII T., 1974. Corresponding distributions of modern pollen and vegetation in lower Michigan. Ecology 55: 17–28.Google Scholar
  73. WebbIII T., 1980. The reconstruction of climatic sequences from botanical data. J. Interdisc. Hist. 19: 749–772.Google Scholar
  74. WebbIII T., 1981. 11 000 years of vegetational change in eastern North America. BioScience 31: 501–506.Google Scholar
  75. WebbIII T., 1982. Temporal resolution in Holocene pollen data. Third North American Paleontological Convention Proc. 2: 569–572.Google Scholar
  76. WebbIII T., Laseski R. A. & Bernabo J. C., 1978. Sensing vegetational patterns with pollen data: choosing the data. Ecology 59: 1151–1163.Google Scholar
  77. WebbIII T., Cushing E. J. & WrightJr H. E., 1983a. Holocene changes in the vegetation of the Midwest. In: H. E. WrightJr (ed.), Late-Quaternary Environments of the United States, Vol. 2, The Holocene, pp. 142–165. University of Minnesota Press, Minneapolis.Google Scholar
  78. WebbIII T., Richard P. J. H. & Mott R. J., 1983b. A mapped history of Holocene vegetation in southern Quebec. Syllogeus 49: 273–336.Google Scholar
  79. WebbIII T., Kutzbach J. E. & Street-Perrott F. A., 1985. 20 000 years of global climatic change: paleoclimatic research plan. In: T. F. Malone & J. G. Roederer (eds), Global change, pp. 182–219. ICSU Press Symposium Series No. 5. Cambridge University Press, Cambridge.Google Scholar
  80. WrightJr H. E., 1968. History of the prairie peninsula. In: R. E. Bergstrom (ed.), The Quaternary of Illinois, pp. 78–88. Special Report 14, College of Agriculture, University of Illinois, Urbana.Google Scholar
  81. WrightJr H. E., 1980. Surge moraines of the Klutlan Glacier, Yukon Territory, Canada: origin, wastage, vegetation succession, lake development, and application to the late-glacial of Minnesota. Quat. Res. 14: 2–18.Google Scholar
  82. WrightJr H. E., 1984. Sensitivity and response time of natural systems to climate change in the late-Quaternary. Quat. Sci. Rev. 3: 91–131.Google Scholar

Copyright information

© Dr W. Junk Publishers 1986

Authors and Affiliations

  • Thompson WebbIII
    • 1
  1. 1.Department of Geological SciencesBrown UniversityProvidenceUSA

Personalised recommendations