Modeling and simulation of crack propagation in mixed-modes interlaminar fracture specimens
Article
Received:
Accepted:
Abstract
A study of mixed-mode crack propagation in bending-based interlaminar fracture specimens is here presented. A numerical scheme to simulate full crack propagation is proposed which makes use of interface laws relating interlaminar stresses to displacement discontinuities along the plane of crack propagation. The relation between interface laws and mixed-mode failure loci in terms of critical energies is discussed and clarified. Numerical simulations are presented and compared with analytical and experimental results.
Keywords
Mechanical Engineer Civil Engineer Numerical Scheme Failure Locus Critical Energy
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- 1.W.S. Johnson (ed), ASTM Special Technical Publication 876, Philadelphia (1985).Google Scholar
- 2.A.C. Garg, Engineering Fracture Mechanics 29 (1988) 557–584.Google Scholar
- 3.N.J. Pagano (ed), Interlaminar Response of Composite Materials, Composite Material Series 5, Elsevier, Amsterdam (1989).Google Scholar
- 4.M.F. Kanninen, International Journal of Fracture 9, 1 (1973) 83–92.Google Scholar
- 5.J.W. Gillespie, L.A. Carlsson and R.B. Pipes, Composite Science and Technology 27 (1986) 177–197.Google Scholar
- 6.J.G. Williams, International Journal of Fracture 36 (1988) 101–119.Google Scholar
- 7.M.L. Benzeggagh, X.J. Gong and J.M. Roelandt, Proceedings of 6éme Journées Nationales sur les Composites, JNC6 Paris (1988) 365–377.Google Scholar
- 8.S.L. Donaldson, Composite Science and Technology 31 (1988) 225–249.Google Scholar
- 9.J.G. Williams, Journal of Strain Analysis 24, 4 (1989) 207–214.Google Scholar
- 10.J.M. Whitney, in Interlaminar Response of Composite Materials, Composite Materials Series 5, N.J. Pagano (ed.) (1989) 111–239.Google Scholar
- 11.S. Hashemi, A.J. Kinloch and J.G. Williams, Composites Science and Technology 37 (1990) 429–462.Google Scholar
- 12.Z. Suo, Journal of Applied Mechanics, ASME 57 (1990) 627–634.Google Scholar
- 13.A. Laksimi, M.L. Benzeggagh, G. Jing, M. Hecini and J.M. Roelandt, Composites Science and Technology 41 (1991) 147–164.Google Scholar
- 14.L. Le, Composite Science and Technology 43 (1992) 49–54.Google Scholar
- 15.X.J. Gong, PhD thesis, Universite de Technologie de Compiegne, France (1992).Google Scholar
- 16.X.Y. Zhu, Z.X. Li and Y.X. Jin, Engineering Fracture Mechanics 44 (1993) 545–552.Google Scholar
- 17.X.Y. Zhu, Z.X. Li and Y.X. Jin, Engineering Fracture Mechanics 44 (1993) 553–560.Google Scholar
- 18.P. Ladevéze, Proceedings of 5ème Journées Nationales sur les Composites, JNC5, Paris (1986) 667–683.Google Scholar
- 19.O. Allix, in Calcul des Structures et Intelligence Artificielle, J.M. Fouet, P. Ladevéze, 040 R. Ohayon (eds), v1, Pluralis, Paris (1987).Google Scholar
- 20.P. Ladevéze, Computer and Structures 44 (1992) 79–87.Google Scholar
- 21.P. Ladevéze and E.Le Dantec, Composites Science and Technology 43 (1992) 257–267.Google Scholar
- 22.O. Allix and P. Ladevéze, Composites Structures 22 (1992) 235–242.Google Scholar
- 23.A. Corigliano, International Journal of Solids and Structures 30, 20 (1993) 2779–2811.Google Scholar
- 24.L. Daudeville and P. Ladevéze, Journal of Composites Structures 25 (1993) 547–555.Google Scholar
- 25.O. Allix, A. Corigliano and P. Ladevéze, Proceedings of 8ème Journées Nationales sur les Composites JNC8, Paris (1992) 763–774.Google Scholar
- 26.O. Allix, P. Ladevéze and A. Corigliano, Composites Structures 31 (1995) 61–74.Google Scholar
- 27.J. Backlund, Computers and Structures 13 (1981) 145–154.Google Scholar
- 28.J.C. Schellekens and R.de Borst, in New advances in Computational Structural Mechanics Elsevier, Amsterdam (1992) 397–410.Google Scholar
- 29.J.C. Schellekens and R. de Borst, Proceedings of the Third International Conference on Computational Plasticity, COMPLAS III, Barcelona (1992).Google Scholar
- 30.J.L. Billoet, T. Ben Zibeb and B. Ben Lazreg, in Delaminage, Bilan et perspectives, Journées AMAC/CSMA, Annales des Composites 95/1, O. Allix, M.L. Benzeggagh (eds), (1995) 129–138, Amac publication.Google Scholar
- 31.D.J. Chang, R. Muki and R.A. Westmann, International Journal of Solids and Structures 12 (1976) 13–26.Google Scholar
- 32.E. Riks, Journal of Applied Mechanics 39 (1972) 1060–1066.Google Scholar
- 33.E. Ramm, in Non-linear Finite Element Analysis in Structural Mechanics, W. Wunderlich, E. Stein and K.J. Bathe (eds.) Springer-Verlag, New York (1981) 68–89.Google Scholar
- 34.M.A. Crisfield, Computer and Structures 13 (1981) 55–62.Google Scholar
- 35.Z. Chen and H.L. Schreyer, Computer and Structures 37 (1990) 1043–1050.Google Scholar
- 36.J.C. Schellekens and R.de Borst, International Journal of Solids and Structures 30, 9 (1993) 1239–1253.Google Scholar
- 37.L. Daudeville and P. Ladevéze, 7th International Conference on Composite Structures, International Journal of Composite Structures (1993) to be published.Google Scholar
- 38.E.F. Rybicki and M.F. Kanninen, Engineering Fracture Mechanics 9 (1977) 931–938.Google Scholar
- 39.I.S. Raju, Engineering Fracture Mechanics 28, 3 (1987) 251–274.Google Scholar
- 40.R. Hill, Journal of the Mechanics and Physics of Solids 6 (1958) 236–249.Google Scholar
- 41.G. Maier and D.C. Drucker, Journal of the Engineering Mechanics Division 99 (1973) 819–834.Google Scholar
- 42.Q.S. Nguyen, Journal de Mécanique Théorique et Appliquée 3, 1 (1984) 41–61.Google Scholar
- 43.Y.N. Li and R.Y. Liang, Journal of Engineering Mechanics, ASCE 118, 3 (1992) 587–603.Google Scholar
- 44.G. Maier, G. Novati and Z. Cen, Computational Mechanics 13 (1993) 74–89.Google Scholar
- 45.M.L. Benzeggagh and M. Kenane, Composite Science and Technology (1994) submitted.Google Scholar
Copyright information
© Kluwer Academic Publishers 1996