Plant Molecular Biology

, Volume 17, Issue 5, pp 1105–1109

Universal primers for amplification of three non-coding regions of chloroplast DNA

  • Pierre Taberlet
  • Ludovic Gielly
  • Guy Pautou
  • Jean Bouvet
Update Section Short Communication

Abstract

Six primers for the amplification of three non-coding regions of chloroplast DNA via the polymerase chain reaction (PCR) have been designed. In order to find out whether these primers were universal, we used them in an attempt to amplify DNA from various plant species. The primers worked for most species tested including algae, bryophytes, pteridophytes, gymnosperms and angiosperms. The fact that they amplify chloroplast DNA non-coding regions over a wide taxonomic range means that these primers may be used to study the population biology (in supplying markers) and evolution (inter- and probably intraspecific phylogenies) of plants.

Key words

chloroplast DNA non-coding region polymerase chain reaction primer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Palmer JD, Jansen RK, Michaels HJ, Chase MW, Manhart JR: Chloroplast DNA variation and plant phylogeny. Ann Missouri Bot Garden 75: 1180–1206 (1988).Google Scholar
  2. 2.
    Clegg MT, Learn GH, Golenberg EM: Molecular evolution of chloroplast DNA. In: Selander RK, Clark AG, Whittam TS (eds) Evolution at the Molecular Level, pp. 135–149. Sinauer Associates, Sunderland (1991).Google Scholar
  3. 3.
    Soltis DE, Soltis PS, Ranker TA, Ness BD: Chloroplast DNA variation in a wild plant,Tolmiea menziesii. Genetics 121: 819–826 (1989).Google Scholar
  4. 4.
    Soltis DE, Soltis PS, Ness BD: Chloroplast-DNA variation and multiple origins of autopolyploidy inHeuchera micrantha. Evolution 43: 650–656 (1989).Google Scholar
  5. 5.
    Rieseberg LH, Soltis DE, Palmer JD: A molecular reexamination of introgression betweenHelianthus annuus andH. bolanderi (Compositae). Evolution 42: 227–238 (1988).Google Scholar
  6. 6.
    Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA: Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487–491 (1988).Google Scholar
  7. 7.
    Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Sinozaki K, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugiura M: The complete nucleotide sequence of the tobacco chloroplast genome. Plant Mol Biol Rep 4: 110–147 (1986).Google Scholar
  8. 8.
    Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aota S, Inokuchi H, Ozeki H: Complete nucleotide sequence of liverwortMarchantia polymorpha chloroplast DNA. Plant Mol Biol Rep 4: 148–175 (1986).Google Scholar
  9. 9.
    Hiratsuka J, Shimada H, Whittier R, Ishibashi T, Sakamoto M, Mori M, Kondo C, Honji Y, Sun CR, Meng BY, Li YQ, Kanno A, Nishizawa Y, Hirai A, Shinozaki K, Sugiura M: The complete sequence of the rice (Oryza sativa) chloroplast genome: Intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol Gen Genet 217: 185–194 (1989).Google Scholar
  10. 10.
    Wolfe KH, Li WH, Sharp PM: Rates of nucleotide substitutions vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci USA 84: 9054–9058 (1987).Google Scholar
  11. 11.
    Sprinzl M, Hartmann T, Weber J, Blank J, Zeidler R: Compilation of tRNA sequences and sequences of tRNA genes. Nucl Acids Res 15: r1-r172 (1989).Google Scholar
  12. 12.
    Doyle JJ, Doyle JL: Isolation of plant DNA from fresh tissue. Focus 12: 13–15 (1990).Google Scholar
  13. 13.
    Allard MW, Ellsworth DL, Honeycutt RL: The production of single-stranded DNA suitable for sequencing using the polymerase chain reaction. Bio Techniques 10: 24–26 (1991).Google Scholar
  14. 14.
    Whittemore AT, Schaal BA: Interspecific gene flow in sympatric oaks. Proc Natl Acad Sci USA 88: 2540–2544 (1991).Google Scholar
  15. 15.
    Kocher TD, Thomas WK, Meyer A, Edwards SV, Pääbo S, Villablanca FX, Wilson AC: Dynamics of mitochondrial DNA evolution in animals: Amplification and sequencing with conserved primers. Proc Natl Acad Sci USA 86: 6196–6200 (1989).Google Scholar
  16. 16.
    Kuhsel MG, Strickland R, Palmer JD: An ancient group I intron shared by Eubacteria and chloroplasts. Science 250: 1570–1573 (1990).Google Scholar

Copyright information

© Kluwer Academic Publishers 1991

Authors and Affiliations

  • Pierre Taberlet
    • 1
  • Ludovic Gielly
    • 1
  • Guy Pautou
    • 1
  • Jean Bouvet
    • 1
  1. 1.Laboratoire de Biologie et d'Evolution des PopulationsUniversité Joseph FourierGrenoble CedexFrance

Personalised recommendations