Advertisement

Plant Molecular Biology

, Volume 27, Issue 5, pp 853–862 | Cite as

Analysis of a repetitive DNA family from Arabidopsis arenosa and relationships between Arabidopsis species

  • A. Kamm
  • I. Galasso
  • T. Schmidt
  • J. S. Heslop-Harrison
Article

Abstract

We have analysed a family of highly repetitive DNA from Arabidopsis arenosa (L.) Lawalrée [syn. Cardaminopsis arenosa (L.) Hayck] composed of AT-rich tandem repeats of 166–179 bp in head to tail organization. Sequence comparison between several repeat units revealed a high level of divergence of 4.5% to 25%. The sequence family shows more than 58% homology to satellite sequences described in Arabidopsis thallana (L.) Heynh. but no homology to other satellite repeats in the Cruciferae. Within the genus Arabidopsis the satellite sequence was found to be present in A. thaliana and Arabidopsis suecica (Fries) Norrlin, but not in Arabidopsis griffithiana (Boiss.) N. Busch and Arabidopsis pumila (Stephan) N. Busch. In situ hybridization to metaphase chromosomes of A. arenosa (2n=4x=32) showed the sequence to be localized at the centromeres of all 32 chromosomes with substantial hybridization along the chromosome arms. Using Southern hybridization and in situ hybridization, we give evidence that A. suecica is a hybrid of A. thaliana and A. arenosa. A considerable reorganization of the A. thaliana satellite sequence pAL1 occurred in the hybrid genome while no molecular change of the A. arenosa repeat was observed in the hybrid. Analysis of related repeats enabled differentiation between closely related genomes and are useful for the investigation of hybrid genomes.

Key words

Arabidopsis arenosa Cruciferae genus Arabidopsis in situ hybridization molecular systematics satellite DNA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Al-Shehbaz I: The genera of Sisymbrideae (Cruciferae, Brassicaceae) in the Southeastern United States. J Arnold Arboretum 69: 213–237 (1988).Google Scholar
  2. 2.
    Anamthawat-Jonsson K, Heslop-Harrison JS: Species-specific DNA sequences in the Triticeae. Hereditas 116: 49–54 (1992).Google Scholar
  3. 3.
    Anamthawat-Jonsson K, Heslop-Harrison JS: Isolation and characterization of genome-specific DNA sequences in Triticeae species. Mol Gen Genet 240: 151–158 (1993).Google Scholar
  4. 4.
    Bedbrook JR, Jones J, O'Dell M, Thomson RD, Flavell RB: A molecular description of telomeric heterochromatin in Secale species. Cell 19: 545–560 (1980).Google Scholar
  5. 5.
    Bennett MD, Smith JB: Nuclear DNA amounts in angiosperms. Phil Trans R Soc Lond B 274: 227–274 (1976).Google Scholar
  6. 6.
    Bennett MD, Smith JB: Nuclear DNA amounts in angiosperms. Phil Trans R Soc Lond B 334: 309–345 (1991).Google Scholar
  7. 7.
    Benslimane AA, Dron M, Hartmann C, Rode A: Small tandemly repeated DNA sequences of higher plants likely originate from a tRNA gene ancestor. Nucl Acids Res 14: 8111–8119 (1986).Google Scholar
  8. 8.
    Capesius I: Sequence of the cryptic satellite DNA from the plant Sinapis alba. Biochim Biophys Acta 739: 276–280 (1983).Google Scholar
  9. 9.
    Cavalier-Smith T: Eukaryote gene numbers, noncoding DNA and genome size. In: Cavalier-Smith T (ed) The Evolution of Genome Size, p. 112–115. John Wiley, Chichester (1985).Google Scholar
  10. 10.
    Chase MW, Soltis DE, Olmstead RG, Morgan D, Les DH and 42 others: Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL1. Ann Missouri Bot Gard 8: 528–580 (1993).Google Scholar
  11. 11.
    Dellaporta SL, Wood J, Hicks JB: A plant DNA minipreparation: version 2. Plant Mol Biol Rep 1: 19–22 (1983).Google Scholar
  12. 12.
    Grellet F, Delcasso D, Panabieres F, Delseny M: Organization and evolution of a higher plant alphoid-like satellite DNA sequence. J Mol Biol 187: 495–507 (1986).Google Scholar
  13. 13.
    Grellet F, Tremousaygue D, Delseny M: Isolation and characterization of a tandemly repeated DNA sequence from the crucifer Sisymbrium irio. Indian J Biochem Biophys 25: 483–487 (1988).Google Scholar
  14. 14.
    Gupta PK, Fedak G, Molnar SJ, Wheatcroft R: Distribution of a Secale cereale DNA repeat sequence among 25 Hordeum species. Genome 32: 383–388 (1989).Google Scholar
  15. 15.
    Hallden C, Bryngelsson T, Säll T, Gustafsson M: Distribution and evolution of a repeated DNA sequence in the family Brassicaceae. J Mol Evol 25: 318–323 (1987).Google Scholar
  16. 16.
    Harrison GE, Heslop-Harrison JS: Centromeric repetitive DNA in the genus Brassica. Theor Appl Genet 90: 157–165 (1994).Google Scholar
  17. 17.
    Heslop-Harrison JS, Maluszynska J: The molecular cytogenetics of Arabidopsis. In: Meyerowitz E, Somerville CJ (eds) Arabidopsis. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, in press (1994).Google Scholar
  18. 18.
    Heslop-Harrison JS, Schwarzacher T: The ultrastructure of Arabidopsis thaliana chromosomes. In: Schweizer D, Peuker K, Loidl J (eds) Fourth International Conference on Arabidopsis Research, Vienna, June 2–5, Abstracts, p. 3 (1990).Google Scholar
  19. 19.
    Hori H, Lim BL, Osawa S: Evolution of green plants as deduced from 5S rRNA sequences. Proc Natl Acad Sci USA 82: 820–823 (1985).Google Scholar
  20. 20.
    Iwabuchi M, Itoh K, Shimamoto K: Molecular and cytological characterization of repetitive DNA sequences in Brassica. Theor Appl Genet 82: 349–355 (1991).Google Scholar
  21. 21.
    Koornneef M, vanEden J, Hanhart CJ, Braaksma FJ, Feenstra WJ: Linkage map of Arabidopsis thaliana. J Heredity 74: 265–272 (1983).Google Scholar
  22. 22.
    Kovtun YV, Korostash MA, Butsko YV, Gleba YY: Amplification of repetitive DNA from Nicotiana plumbaginifolia in asymmetric somatic hybrids between Nicotiana sylvestris and Nicotiana plumbaginifolia. Theor Appl Genet 8: 221–228 (1993).Google Scholar
  23. 23.
    Kranz AR, Kirchheim B: Genetic resources in Arabidopsis. Arabidopsis Inf Serv 24: 3.4.1–3.4.4 (1987).Google Scholar
  24. 24.
    Lakshmikumaran M, Ranade SA: Isolation and characterization of a highly repetitive DNA of Brassica campestris. Plant Mol Biol 14: 447–448 (1990).Google Scholar
  25. 25.
    Leutwiler LS, Hough-Evens BR, Meyerowitz EM: The DNA of Arabidopsis thaliana. Mol Gen Genet 194: 15–23 (1984).Google Scholar
  26. 26.
    Lin LS, Ho THD, Harlan JR: Rapid amplification and fixation of new restriction sites in the ribosomal DNA repeats in the derivatives of a cross between maize and Trisacum dactyloides. Devel Genet 6: 101–112 (1985).Google Scholar
  27. 27.
    Linnaeus C: Species Plantarum (1753).Google Scholar
  28. 28.
    Maluszynska J, Heslop-Harrison JS: Localization of tandemly repeated DNA sequences in Arabidopsis thaliana. Plant J 1: 159–166 (1991).Google Scholar
  29. 29.
    Maluszynska J, Heslop-Harrison JS: Molecular cytogenetics of the genus Arabidopsis: in situ localization of rDNA sites, chromosome numbers and diversity in centromeric heterochromatin. Ann Bot 71: 479–484 (1993).Google Scholar
  30. 30.
    Martinez-Zapater JM, Estelle MA, Somerville CR: A highly repeated DNA sequence in Arabidopsis thaliana. Mol Gen Genet 204: 417–423 (1986).Google Scholar
  31. 31.
    May CE, Appels R: Rye chromosome translocations in hexaploid wheat: a re-evaluation of the loss of heterochromatin from rye chromosomes. Theor Appl Genet 56: 17–23 (1980).Google Scholar
  32. 32.
    McClintock B: Mechanisms that rapidly reorganize the genome. Stadler Genet Sym 10: 25–48 (1978).Google Scholar
  33. 33.
    Meinkoth J, Wahl G: Hybridization of nucleic acids immobilized on solid support. Anal Biochem 138: 267–284 (1984).Google Scholar
  34. 34.
    Meyerowitz EM, Pruitt RE: Arabidopsis thaliana and plant molecular genetics. Science 229: 1214–1218 (1985).Google Scholar
  35. 35.
    Nagl W: ‘Arabidobrassica’: evidence for intergenic somatic hybrid nature from electron microscopic morphometry of chromatin. Eur J Cell Biol 21: 227–228 (1980).Google Scholar
  36. 36.
    Orgaard M, Heslop-Harrison JS: Relationships between species of Leymus, Psathyrostachys, and Hordeum (Poaceae, Trificeae) inferred from Southern hybridization of genomic and cloned DNA probes. Plant Syst Evol 189: 217–231 (1994).Google Scholar
  37. 37.
    Redei GP: A heuristic glance at the past of Arabidopsis genetics. In: Konez C, Chua N-H, Schell J, (eds) Methods in Arabidopsis Research, pp. 1–15. World Scientific, Singapore (1992).Google Scholar
  38. 38.
    Schmidt T, Heslop-Harrison JS: Variability and evolution of highly repeated DNA sequences in the genus Beta. Genome 36: 1074–1079 (1993).Google Scholar
  39. 39.
    Schmidt T, Metzlaff M: Cloning and characterization of a Beta vulgaris satellite DNA family. Gene 101: 247–250 (1991).Google Scholar
  40. 40.
    Schweizer G, Ganal M, Ninnemann H, Hemleben V: Species-specific DNA sequences for identification of somatic hybrids between Lycopersicon esculentum and Solanum acaule. Theor Appl Genet 75: 679–684 (1988).Google Scholar
  41. 41.
    Seal AG, Bennett MD: The rye genome in winter hexaploid triticales: chromosome substitutions. Can J Cytol 23: 647–653 (1981).Google Scholar
  42. 42.
    Simoens CR, Gielen J, VanMontagu M, Inzé D: Characterization of highly repetitive sequences of Arabidopsis thaliana. Nucl Acids Res 16: 6753–6766 (1988).Google Scholar
  43. 43.
    Smith G: Evolution of repeated sequences by unequal crossover. Science 191: 528–535 (1975).Google Scholar
  44. 44.
    Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA: Flora Europaea vol. 1, 2nd ed., p. 352 (1993).Google Scholar
  45. 45.
    Willard HF, Waye JS: Hierarchical order in chrosome-specific alpha satellite DNA. Trends Genet 3: 192–198 (1987).Google Scholar
  46. 46.
    Vershinin AV, Salina A, Svitashev SK: Is there a connection between genomic changes and wide hybridization? Hereditas 116: 213–217 (1992).Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • A. Kamm
    • 1
  • I. Galasso
    • 2
  • T. Schmidt
    • 1
  • J. S. Heslop-Harrison
    • 1
  1. 1.Karyobiology Group, Department of Cell BiologyJohn Innes CentreNorwichUK
  2. 2.Germplasm InstituteCNRBariItaly

Personalised recommendations