Advertisement

Plant Molecular Biology

, Volume 15, Issue 2, pp 245–256 | Cite as

Agrobacterium-mediated plant transformation by novel mini-T vectors in conjunction with a high-copy vir region helper plasmid

  • Eva Zyprian
  • Clarence I. Kado
Article

Abstract

A new binary vector system for Agrobacterium-mediated plant transformation was developed. A set of four mini-T vectors comprised of T-DNA border sequences from nopaline-type Ti-plasmid pTiC58 flanking a chimaeric hygromycin-resistance gene for selection of transformants and up to eight unique restriction sites for cloning foreign DNA was constructed on a broad-host replicon containing the oriV of plasmid pSa. In two of the constructs these multiple cloning sites are flanked by a strong promoter to activate transcription of inserted DNA in planta. High-efficiency transformation was prompted by a high-copy, stable virulence helper plasmid pUCD2614, which contains a cloned virulence region of pTiC58 and tandem copies of the par locus of plasmid pTAR. Southern blot hybridization and genetic analyses of the progeny of transformed plants showed that the hygromycin resistance gene was stably inherited.

Key words

binary vector high-copy virulence plasmid hygromycin B resistance broad-host-range shuttle vector Agrobacterium tumefaciens pSa 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    An G, Watson BD, Chiang CC: Transformation of tobacco, tomato, potato, and Arabidopsïs thaliana using a binary Ti vector system. Plant Physiol 81: 301–305 (1986).Google Scholar
  2. 2.
    Baker KF: The UC system for producing healthy container-grown plants. Calif Agr Exp Sta Man 23: 68–86 (1957).Google Scholar
  3. 3.
    Bevan M, Goldsbrough A: Design and use of Agrobacterium transformation vectors. In: JK Setlow (ed.) Genetic engineering principles and methods, vol. 10, pp. 123–140 (1988).Google Scholar
  4. 4.
    Birnboim HC, Doly J: A rapid alkaline extraction procedure for screening of recombinant plasmid DNA. Nucl Acids Res 7: 1513–1523 (1979).PubMedGoogle Scholar
  5. 5.
    Bulton MI, Buchholz WG, Marks MS, Markham PG, Davies JW: Specificity of Agrobacterium-mediated delivery of maize streak virus DNA to members of the Gramineae. Plant Mol Biol 12: 31–40 (1989).CrossRefGoogle Scholar
  6. 6.
    Boyer HW, Roulland-Dussoix D: A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol 41: 459–472 (1969).CrossRefPubMedGoogle Scholar
  7. 7.
    Charest PJ, Iyer VN, Miki BL: Virulence of Agrobacterium tumefaciens strains with Brassica napus and Brasica juncea. Plant Cell Rep 8: 303–306 (1989).CrossRefGoogle Scholar
  8. 8.
    Close TJ, Zaitlin D, Kado CI: Design and development of amplifiable broad-host-range cloning vectors: Analysis of the vir region of Agrobacterium tumefaciens plasmid pTiC58. Plasmid 12: 111–118 (1984).PubMedGoogle Scholar
  9. 9.
    De Block M: Genotype-independent leaf disc transformation of potato (Solanum tuberosum) using Agrobacterium tumefaciens. Theor Appl Genet 76: 767–774 (1988).CrossRefGoogle Scholar
  10. 10.
    DeFramond AJ, Barton KA, Chilton M-D: Mini-Ti: a new vector strategy for plant genetic engineering. Biotechnology 1: 262–269 (1983).CrossRefGoogle Scholar
  11. 11.
    Depicker A, De Wilde M, De Vos G, De Vos M, Van Montagu M, Schell J: Molecular cloning of overlapping fragments of the nopaline T-plasmid pTiC58 as a means to restriction endonuclease mapping. Plasmid 3: 193–211 (1980).PubMedGoogle Scholar
  12. 12.
    Ditta G, Stanfield S, Corbin D, Helinski DR: Broad host-range DNA cloning systems for gram negative bacteria; construction of a gene bank of Rhizobium meliloti. Proc Natl Acad Sci USA 77: 7347–7351 (1980).PubMedGoogle Scholar
  13. 13.
    Gallie DR, Novak S, Kado CI: Novel high-and low-copy stable cosmids for use in Agrobacterium and Rhizobium. Plasmid 14: 171–175 (1985).PubMedGoogle Scholar
  14. 14.
    Gasser CS, Fraley RT: Genetically engineering plants for crop improvement. Science 244: 1293–1299 (1989).Google Scholar
  15. 15.
    Gonzales A, Jimenez A, Vazquez D, Davies JE, Schindler D: Studies on the mode of action of hygromycin B, an inhibitor of translocation in eukaryotes. Biochim Biophys Acta 521: 459–469 (1978).PubMedGoogle Scholar
  16. 16.
    Grimsley N, Hohn B, Hohn T, Walden R: ‘Agroinfection’, an alternative route for viral infection of plants by using the Ti plasmid. Proc Natl Acad Sci USA 83: 3282–3286 (1986).Google Scholar
  17. 17.
    Gritz L, Davies J: Plasmid-encoded hygromycin B resistance: the sequence of hygromycin B phosphotransferase gene and its expression in Escherichia coli and Saccharomyces cerevisiae. Gene 25: 279–188 (1983).CrossRefGoogle Scholar
  18. 18.
    Guilley H, Dudley RK, Jonard G, Balazs E, Richards K: Transcription of cauliflower mosaic virus DNA: detection of promoter sequences, and characterization of transcripts. Cell 30: 763–773 (1982).CrossRefPubMedGoogle Scholar
  19. 19.
    Hille J, Verheggen F, Roelvink P, Franssen H, Van Kammen A, Zabel P: Bleomycin resistance: a new dominant selectable marker for plant cell transformation. Plant Mol Biol 7: 171–176 (1986).Google Scholar
  20. 20.
    Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA: A binary plant vector strategy based on separation of vir-and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303: 179–180 (1983).Google Scholar
  21. 21.
    Horsch RB, Fry JE, Hoffman NL, Eichholtz D, Rogers SG, Fraley RT: A simple and general method for transferring genes into plants. Science 227: 1229–1231 (1985).Google Scholar
  22. 22.
    Kado CI, Rogowsky P, Close TJ, Quale TJA: Regulation of genes involved in T-DNA processing: An initial step in the genetic modification of plant cells. NATO ASI Series H18: 115–133 (1988).Google Scholar
  23. 23.
    Klapwijk P, Van Beelen P, Schilperoort RA: Isolation of a recombinant deficient Agrobacterium tumefaciens mutant. Mol Gen Genet 173: 171–175 (1979).CrossRefPubMedGoogle Scholar
  24. 24.
    Langley RA, Kado CI: Studies on Agrobacterium tumefaciens. Conditions for mutagenesis by N-methyl-N′-nitro-N-nitrosoguanidine and relationships of A. tumefaciens mutants to crown-gall tumor induction. Mutation Res 14: 277–286 (1972).Google Scholar
  25. 25.
    Maniatis T, Fritsch EF, Sambrook JH: Molecular Cloning: A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1982).Google Scholar
  26. 26.
    McCormick S, Niedermeyer J, Fry J, Barbason A, Horsch R, Fraley R: Leaf disc transformation of cultivated tomato (L. esculentum) using Agrobacterium tumefaciens. Plant Cell Rep 5: 81–84 (1986).CrossRefGoogle Scholar
  27. 27.
    Mettler IJ: A simple and rapid method for minipreparation of DNA from tissue cultured plant cells. Plant Mol Biol Rep 5: 346–349 (1987).Google Scholar
  28. 28.
    Miller JH: Experiments in Molecular Genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1972).Google Scholar
  29. 29.
    Morrison DA: Transformation and preservation of competent bacterial cells by freezing. Meth Enzymol 68: 326–331 (1979).PubMedGoogle Scholar
  30. 30.
    Odell JT, Nagy F, Chua N-H: Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313: 810–812 (1985).PubMedGoogle Scholar
  31. 31.
    Ooms G, Hooykaas PJJ, Van Veen RJM, Van Beelen P, Regensburg-Tuink TJG, Schilperoort RA: Octopine Tiplasmid deletion mutants of Agrobacterium tumefaciens with emphasis on the right side of the T-region. Plasmid 7: 15–29 (1982).PubMedGoogle Scholar
  32. 32.
    Rempel H: Thesis, University of California, Davis (1989).Google Scholar
  33. 33.
    Rogers SG, Klee H: Pathways to plant genetic manipulation employing Agrobacterium. In: Hohn Th, Schell J (ed.) Plant DNA infectious agents, pp. 179–203. Springer Verlag, Wien, New York (1987).Google Scholar
  34. 34.
    Rogers SG, Horsch RB, Fraley RT, Klee HJ: Current vectors for plant transformation. In: Rodriguez RL, Denhardt DT (ed.) Vectors, a survey of molecular cloning vectors and their uses, pp. 539–557. Butterworths, Boston (1988).Google Scholar
  35. 35.
    Rogowsky PM, Powell BS, Shirasu K, Lin T-S, Morel P, Zyprian EM, Steck TR, Kado CI: Molecular characterization of the vir regulon of Agrobacterium tumefaciens: complete nucleotide sequence and gene organization of the 28.63 kbp regulon cloned as a single unit. Plasmid 23: 85–106.Google Scholar
  36. 36.
    Scowcroft WR, Davies P, Ryan SA, Brettell RIS, Pallotta MA, Larkin PJ: The analysis of somaclonal mutants. In: M Freeling (ed.) Plant Genetics, pp. 799–815. Alan R. Liss, New York (1985).Google Scholar
  37. 37.
    Schmidt R, Willmitzer L: High efficiency Agrobacterium tumefaciens mediated transformation of Arabidopsis thaliana leaf and cotyledon explants. Plant Cell Rep 7: 583–586 (1988).CrossRefGoogle Scholar
  38. 38.
    Southern EM: Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98: 503–517 (1975).PubMedGoogle Scholar
  39. 39.
    Valentine CRI, Kado CI: Molecular genetics of IncW plasmids. In: Thomas C (ed.) Promiscuous plasmids of Gram-negative bacteria, pp. 125–163. Academic Press, London (1989).Google Scholar
  40. 40.
    Vieira J, Messing J: Production of single-stranded plasmid DNA. Meth Enzymol 153: 3–11 (1987).PubMedGoogle Scholar
  41. 41.
    Van den Elzen PJM, Townsend J, Yee KY, Bedbrook JR: A chimaeric hygromycin resistance gene as a selectable marker in plant cells. Plant Mol Biol 5: 299–302 (1985).Google Scholar
  42. 42.
    Visser RGF, Jacobsen E, Witholt B, Feenstra WJ: Efficient transformation of potato (Solanum tuberosum L.) using a binary vector in Agrobacterium rhizogenes. Theor Appl Genet 78: 594–600 (1989).CrossRefGoogle Scholar
  43. 43.
    Waldron C, Murphy EB, Roberts JL, Gustafson GD, Armour SL, Malcolm SK: Resistance to hygromycin B. Plant Mol Biol 5: 103–108 (1985).Google Scholar
  44. 44.
    Wang K, Herrera-Estrella L, Van Montagu M, Zambryski P: Right 25 bp terminus sequence of the nopaline T-DNA is essential for and determines direction of DNA transfer from Agrobacterium to the plant genome. Cell 38: 455–462 (1984).CrossRefPubMedGoogle Scholar
  45. 45.
    Wang K, Genetello C, Van Montagu M, Zambryski PC: Sequence context of the T-DNA border repeat element determines its relative activity during T-DNA transfer to plant cells. Mol Gen Genet 210: 338–346 (1987).Google Scholar
  46. 46.
    Yadav NS, Vanderleyden J, Bennett DR, Barnes WM, Chilton MD: Short direct repeats flank the T-DNA on a nopaline Ti plasmid. Proc Natl Acad Sci USA 79: 6322–6326 (1982).Google Scholar
  47. 47.
    Yanisch-Perron C, Vieira J, Messing J: Improved M13 phage cloning vectors and host strains: nucleotide sequence of the M13mp18 and pUC19 vectors. Gene 33: 103–119 (1983).CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • Eva Zyprian
    • 1
  • Clarence I. Kado
    • 1
  1. 1.Department of Plant PathologyUniversity of CaliforniaDavisUSA

Personalised recommendations