Hydrobiologia

, Volume 38, Issue 2, pp 225–238 | Cite as

Dynamics of major ions in some permanent and semi-permanent saline systems

  • Dean W. Blinn
Article

Summary

  1. 1.

    Seasonal changes in major ions were investigated and compared in three semi-permanent (0.5 meter maximum depth) and two permanent lakes (1.5 meter maximum depth) in southern British Columbia, Canada.

     
  2. 2.

    Rapid evaporation rates cause drastic physical changes in the semi-permanent habitats with late summer condition represented by the concentrated solutions limited to scattered pockets throughout the basin.

     
  3. 3.

    These changes create extreme osmotic stress on organisms inhabiting the systems with late summer solutions at least 10-fold higher than the spring solutions.

     
  4. 4.

    Short-lived vertical density gradients are formed in the early spring, even in systems with maximum depth of 50 cm, by the dilute runoff water forming a layer on top of the concentrated solutions already in the system. Stable density gradients form in late summer stagnant waters in permanent systems.

     
  5. 5.

    Seasonal shifts of cations particularly Na and Mg, were observed in the semi-permanent habitats with sodium dominant systems in the spring changing to magnesium dominant systems in the fall.

     
  6. 6.

    The significance of these cation shifts on the biota are discussed with particular reference to a filamentous green alga Ctenocladus circinnatus Borzi.

     

Zusammenfassung

  1. 1.

    Jahreszeitliche Schwankungen in den wichtigsten Ionen wurden untersucht and miteinander verglichen in drei semipermanenten Seen (0.5 m größte Tiefe) and zwei permanenten Seen (1.5 m größte Tiefe) im südlichen British Columbia, Canada.

     
  2. 2.

    Rasche Verdunstung verursacht tiefgreifende physikalische Änderungen in den semipermanenten Wohngebieten. Konzentrierte Lösungen in vereinzelten Tümpeln kennzeichnen die Bedingungen im Spätsommer.

     
  3. 3.

    Diese Schwankungen bedeuten eine außerordentliche osmotische Beanspruchung der Lebewesen in dem System, da die Gewässer im Spätsommer mindestens zehn mal konzentrierter sind als im Frühjahr.

     
  4. 4.

    Für kurze Zeit im beginnenden Frühjahr bilden sich senkrechte Gefälle der Lösungsdichte aus, selbst in flachen Systemen mit 50 cm größter Tiefe, verursacht durch Überlagerung der bereits vorhandenen konzentrierten Lösungen mit verdünntem Schmelzwasser. Stabile Dichte-Gefälle kommen im Spätsommer in den stagnierenden Wassern der permanenten Systeme zustande.

     
  5. 5.

    Jahreszeitlicher Wechsel in Kationen, namentlich Natrium and Magnesium, wurde in den semipermanenten Wohngebieten beobachtet. Systeme mit vorwiegend Natrium im Frühjahr verwandelten sich in Systeme mit vorwiegend Magnesium im Herbst.

     
  6. 6.

    Die Bedeutung dieser Kationenwechsel für die Lebewesen wird besprochen mit besonderem Hinweis auf die grüne Fadenalge Ctenocladus circinnatus Borzi.

     

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. American Public Health Association - 1965 - Standard methods for the examination of water and waste water. 12th ed. New York. 769 p.Google Scholar
  2. Anderson, G. C. - 1958 - Seasonal characteristics of two saline lakes in Washington. Limnol. Oceanogr. 3: 51–68.Google Scholar
  3. Bayley, I. A. E. & Williams, W. D. - 1966 - Chemical and biological studies on some saline lakes of S.E. Australia. Aust. J. Mar. Freshwat. Res. 17: 177–228.Google Scholar
  4. Blinn, D. W. - 1969 - Autecology of Ctenocladus (Chlorophyceae) in Saline Environments. Ph.D. Thesis, University of British Columbia, Vancouver, 135 p.Google Scholar
  5. Blinn, D. W. - 1970 - The influence of sodium on the development of Ctenocladus circinnatus Borzi (Chlorophyceae). Phycologia 9: 49–54.Google Scholar
  6. Castenholz, R. - 1960 - Seasonal changes in the attached algae of freshwater and saline lakes in the lower Grand Coulee, Washington. Limnol. Oceanogr. 5: 1–28.Google Scholar
  7. Cockfiled, W. E. - 1961 - Geology and mineral deposits of Nicola map area, British Columbia. Geol. Surv. Canada; Dept. Mines Tech. Surv. Memoir 249: 104–149.Google Scholar
  8. Cole, G. A. - 1968 - Desert Limnology. In: Desert Biology. (Brown, G. W. (ed.) 1. Academic Press. 635 p.Google Scholar
  9. Cole, G. A., Whiteside, M. C. & Brown, R. J. - 1967 - Unusual meromixis in two saline Arizona ponds. Limnol. Oceanogr. 12: 584–591.Google Scholar
  10. Hartland-Rowe, R. - 1966 - The fauna and ecology of temporary pools in Western Canada. Verh. int. Ver. Theor. angew. Limnol. 16: 577–584.Google Scholar
  11. Harvey, H. W. - 1963 - The Chemistry and Fertility of Sea Waters. Cambridge University Press, London. 240 p.Google Scholar
  12. Hutchinson, G. E. - 1957 - A Treatise on Limnology. 1. (Geography, Physics and Chemistry). John Wiley and Sons, New York. 1015 p.Google Scholar
  13. Langbein, W. B. - 1961 - Salinity and hydrology of closed lakes. U.S. Geol. Surv. Prof. Paper 412: 20 p.Google Scholar
  14. Mann, K. H. - 1958 - Annual fluctuations in sulphate and bicarbonate hardness in ponds. Limnol. Oceanogr. 3: 418–422.Google Scholar
  15. Maucha, R. - 1932 - Hydrochemische Methoden in der Limmologie. Die Binnengewässer, 12, Stuttgart, Schweizerbartsche Verlagsbuchhandlung 173 p.Google Scholar
  16. Northcote, T. G. & Halsey, T. G. - 1969 - Seasonal changes in the limnology of some meromictic lakes in southern British Columbia. J. Fish. Res. Bd. Canada. 26: 1763–1787.Google Scholar
  17. Scudder, G. G. E. - 1969 - The fauna of saline lakes on the Frazer Plateau in British Columbia. Verh. int. Ver. Limnol. 17: 430–439.Google Scholar
  18. Tnalling, J. F. & Talling, I. B. - 1965 - The chemical composition of African lake waters. Int. Rev. Hydrobiol. 50: 421–463.Google Scholar
  19. Washburn, A. L. - 1956 - Classification of patterned ground and review of suggested origins. Am. Geol. Soc. Bull. 67: 823–866.Google Scholar
  20. Wetzel, R. G. - 1964 - A comparative study of the primary productivity of higher aquatic plants, periphyton and phytoplankton in a large shallow lake. Int. Rev. Hydrobiol. 49: 1–61.Google Scholar
  21. Wetzel, R. G. & McGregor, D. L. - 1968 - Axenic culture and nutritional studies of aquatic macrophytes. Amer. Midl. Not. 80: 52–64.Google Scholar

Copyright information

© Dr. W. Junk n.v. Publishers 1971

Authors and Affiliations

  • Dean W. Blinn
    • 1
  1. 1.Department of BiologyUniversity of North DakotaGrand Forks

Personalised recommendations