Advertisement

Euphytica

, Volume 73, Issue 3, pp 199–212 | Cite as

Recent advances in alien gene transfer in wheat

  • Jiming Jiang
  • Bernd Friebe
  • Bikram S. Gill
Review Paper

Summary

The recent advances in alien gene transfer from distantly-related species into wheat are reviewed in the present paper. The main achievements during the last ten years include the great expansion of the range of wide hybridization and development of new techniques for production and characterization of wheat-alien chromosome translocations. Updated results of wide hybridization since 1983 and comprehensive characterization of wheat-alien translocation lines in our laboratory are compiled. The future outlook for alien gene transfer in wheat is also discussed.

Key words

wheat Triticum spp. gene pool wide hybridization chromosome translocation alien gene transfer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmad A. & A. Comeau, 1991. Production, morphology, and cytogenetics of Triticum aestivum (L.) Thell. × Elymus scabrus (R. Br.) Löve intergeneric hybrids obtained by in ovulo embryo culture. Theor. Appl. Genet. 81: 833–839.Google Scholar
  2. Appels R. & L.B. Moran, 1984. Molecular analysis of alien chromatin introduced in wheat. Stadler Genet. Symp. 16: 529–557.Google Scholar
  3. Barclay I.R., 1975. High frequencies of haploid production in wheat (Triticum aestivum) by chromosome elimination. Nature 256: 410–411.Google Scholar
  4. Blanco A., C.V. Fracchiolla & B. Creco, 1986. Intergeneric wheat × barley hybrid. J. Hered 77: 98–100.Google Scholar
  5. Charpentier A., M. Feldman & Y. Cauderon, 1986. Chromosomal pairing at meiosis of F1 hybrid and backcross derivatives of Triticum aestivum × hexaploid Agropyron junceum. Can. J. Genet. Cytol. 28: 1–6.Google Scholar
  6. Chen Q., J. Jahier & Y. Cauderon, 1989. Production and cytogenetical studies of hybrids between Triticum aestivum L. Thell and Agropyron cristatum (L.) Caertn. C. R. Acad. Sci. Ser. 3, 308: 425–430.Google Scholar
  7. Chen Q., J. Jahier & Y. Cauderon, 1990. Intergeneric hybrids between Triticum aestivum and three crested wheatgrasses: Agropyron mongolicum, A. michnoi, and A. desertorum. Genome 33: 663–667.Google Scholar
  8. Chen, P.D., H. Tsujimoto & B.S. Gill, 1994. Transfer of Ph I gene promoting homoeologous pairing from Triticum speltoides into common wheat and their utilization in alien genetic introgression. Theor. Appl. Genet. (in press).Google Scholar
  9. Claesson L., M. Kotimäki & R.von Bothmer, 1990. Production and cytogenetic analysis of the F1 hybrid, Elymus caninus × Triticum aestivum and backcross to T. aestivum. Cereal Res. Comm. 18: 315–319.Google Scholar
  10. Comeau A., G. Fedak, C.A. St-Pierre & R. Cazeault, 1988a. Intergeneric hybrids between Hordeum jubatum (4x) and Triticum aestivum (6x). Genome 30: 245–249.Google Scholar
  11. Comeau A., G. Fedak, C.A. St-Pierre & C. Theriault, 1985. Intergeneric hybrids between Triticum aestivum and species Agropyron and Elymus. Cereal Res. Comm. 13: 149–153.Google Scholar
  12. Comeau A., A. Plourde, C.A. St-Pierre & P. Nadeau, 1988b. Production of doubled haploid wheat lines by wheat × maize hybridization. Genome 30 (Suppl. 1): 482 (Abstr.).Google Scholar
  13. Cox, T.S., 1991. The contribution of introduced germplasm to the development of U.S. wheat cultivars. p. 25–47. In: Use of Plant Introductions in Cultivar Development, Part 1, CSSA Special Publication no. 17.Google Scholar
  14. Curtis C.A. & A.J. Lukaszewski, 1991. Genetic linkage between C-bands and storage protein genes in chromosome 1B of tetraploid wheat. Theor. Appl. Genet. 81: 245–252.Google Scholar
  15. Devos K.M., M.D. Atkinson, C.N. Chinoy, H.A. Francis, R.L. Harcourt, R.M.D. Koebner, C.J. Liu, P. Masojć, D.X. Xie & M.D. Gale, 1993. Chromosomal rearrangements in the rye genome relative to that of wheat. Theor. Appl. Genet. 85: 673–680.Google Scholar
  16. Dvořák J., 1972. Genetic variability in Aegilops speltoides affecting homoeologous pairing in wheat. Can. J. Genet. Cytol. 14: 371–380.Google Scholar
  17. Dvořák J., 1980. Homoeology between Agropyron elongatum chromosomes and Triticum aestivum chromosomes. Can. J. Genet. Cytol. 22: 237–259.Google Scholar
  18. Endo, T.R., 1988. Chromosome mutation induced by gametocidal chromosomes in common wheat. p. 259–265. In: T.E. Miller & R.M.D. Koebner (Eds). Proc. 7th Int. Wheat Genet. Symp., Cambridge, England.Google Scholar
  19. Endo T.R., 1990. Gametocidal chromosomes and their induction of chromosome mutation in wheat. Jpn. J. Genet. 65: 135–152.Google Scholar
  20. Falk D.E. & K.J. Kasha, 1983. Genetic studies of the crossability of hexaploid wheat with rye and Hordeum bulbosum. Theor. Appl. Genet. 64: 303–307.Google Scholar
  21. Farooq S., T.M. Shah & N. Iqbal, 1990. Variation in crossability among intergeneric hybrids of wheat and salt tolerant accessions of three Aegilops species. Cereal Res. Comm. 18: 335–338.Google Scholar
  22. Fedak G., A. Comeau & C.A. St-Pierre, 1986. Meiosis in Triticum aestivum × Elytrigia repens hybrids. Can. J. Genet. Cytol. 27: 430–432.Google Scholar
  23. Feldman, M., 1988. Cytogenetics and molecular approaches to alien gene transfer in wheat. p. 23–32. In: T.E. Miller & R.M.D. Koebner (Eds). Proc. 7th Int. Wheat Genet. Symp., Cambridge, England.Google Scholar
  24. Friebe B., J.H. Hatchett, R.G. Sears & B.S. Gill, 1990. Transfer of Hessian fly resistance from ‘Chaupon’ rye to hexaploid wheat via a 2BS/2RL wheat-rye chromosome translocation. Theor. Appl. Genet. 79: 385–389.Google Scholar
  25. Friebe B., J.H. Hatchett, B.S. Gill, Y. Mukai & E.E. Sebesta, 1991a. Transfer of Hessian fly resistance from rye to wheat via radiation-induced terminal and intercalary chromosome translocations. Theor. Appl. Genet. 83: 33–40.Google Scholar
  26. Friebe B., J. Jiang, B.S. Gill & P.L. Dyck, 1993. Radiation-induced nonhomoeologous wheat-Agropyron intermedium chromosomal translocations conferring resistance to leaf rust. Theor. Appl. Genet. 86: 141–149.Google Scholar
  27. Friebe B. & E.N. Larter, 1988. Identification of a complete set of isogenic wheat/rye D genome substitution lines by means of Giemsa C-banding. Theor. Appl. Genet. 76: 473–479.Google Scholar
  28. Friebe B., Y. Mukai, H.S. Dhaliwal, T.J. Martin & B.S. Gill, 1991b. Identification of alien chromatin specifying resistance to wheat streak mosaic and greenbug in wheat germ plasm by C-banding and in situ hybridization. Theor. Appl. Genet. 81: 381–389.Google Scholar
  29. Friebe B., F.J. Zeller, Y. Mukai, B.P. Forster, P. Bartos & R.A. McIntosh, 1992. Characterization of rust-resistant wheat-Agropyron intermedium derivatives by C-banding, in situ hybridization and isozyme analysis. Theor. Appl. Genet. 83: 775–782.Google Scholar
  30. Gale, M.D. & T.E. Miller, 1987. The introduction of alien genetic variation into wheat. p. 173–210. In: F.G.H. Lupton (Ed). Wheat Breeding—Its Scientific Basis. Chapman & Hall.Google Scholar
  31. Gill B.S. & W.J. Raupp, 1987. Direct genetic transfers from Aegilops squarrosa L. to hexaploid wheat. Crop Sci. 27: 445–450.Google Scholar
  32. Gill B.S., B. Friebe & T.R. Endo, 1991. Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat (Triticum aestivum L.). Genome 34: 830–839.Google Scholar
  33. Guidet F., P. Rogowsky, C. Taylor, W. Song & P. Langridge, 1991. Cloning and characterization of a new rye-specific repeated sequence. Genome 34: 81–87.Google Scholar
  34. Gupta P.K. & G. Fedak, 1985. Intergeneric hybrids between Hordeum californicum and Triticum aestivum. J. Hered. 76: 365–368.Google Scholar
  35. Hart, G.E., 1987. Genetic and biochemical studies of enzymes. p. 199–214. In: E.G. Heyne (Ed). Wheat and Wheat Improvement (second edition).Google Scholar
  36. Heslop-Harrison J.S., A.R. Leitch, T. Schwarzacher & K. Anamthwat-Jónsson, 1990. Detection and characterization of 1B/1R translocation in hexaploid wheat. Heredity 65: 385–392.Google Scholar
  37. Heun M., B. Friebe & W. Bushuk, 1990. Chromosomal location of the powdery mildew resistance gene of Amigo wheat. Phytopathology 80: 1129–1133.Google Scholar
  38. Islam A.K.M.R. & K.W. Shepherd, 1992. Substituting ability of individual barley chromosomes for wheat chromosomes. 1. Substitutions involving barley chromosomes 1, 3 and 6. Plant Breed. 109: 141–150.Google Scholar
  39. Islam, A.K.M.R., K.W. Shepherd & D.H.B. Sparrow, 1978. Production and characterization of wheat-barley addition lines. Proc. 5th Int. Wheat Genet. Symp., New Delhi, p. 365–371.Google Scholar
  40. Jiang J. & B.S. Gill, 1993. Sequential chromosome banding and in situ hybridization analysis. Genome 36: 792–795.Google Scholar
  41. Jiang J. & D. Liu, 1987. New Hordeum-Triticum hybrids. Cereal Res. Comm. 15: 95–99.Google Scholar
  42. Jiang, J., K.L.D. Morris & B.S. Gill, 1993a. Introgression of Elymis trachycaulus chromatin into common wheat. Chromosome Res. (in press).Google Scholar
  43. Jiang J., W.J. Raupp & B.S. Gill, 1992. Rf genes restore fertility in wheat lines with cytoplasms of Elymus trachycaulus and E. ciliaris. Genome 35: 614–620.Google Scholar
  44. Jiang J., P. Chen, B. Friebe, W.J. Raupp & B.S. Gill, 1993b. Alloplasmic wheat Elymus ciliaris chromosome addition lines. Genome 36: 327–333.Google Scholar
  45. Jiang J., B. Friebe, H.S. Dhaliwal, T.J. Martin & B.S. Gill, 1993c. Molecular cytogenetic analysis of Agropyron elongatum chromatin in wheat germplasm specifying resistance to wheat streak mosaic virus. Theor. Appl. Genet. 86: 41–48.Google Scholar
  46. Johnson R., 1966. The substitution of a chromosome from Agropyron elongatum for wheat chromosomes of hexaploid wheat. Can. J. Genet. Cytol. 8: 279–292.Google Scholar
  47. Kaltsikes P.J., 1974. Methods for triticale production. Z. Pflanzenzüchtg. 71: 264–286.Google Scholar
  48. Kimber G. & B.S. Athwal, 1972. A reassessment of the course of evolution of wheat. Proc. Natl. Acad. Sci. USA 69: 912–915.Google Scholar
  49. Knott D.R., 1968. Translocations involving Triticum chromosomes carrying rust resistance. Can. J. Genet. Cytol. 10: 695–696.Google Scholar
  50. Knott, D.R., 1987. Transferring alien genes to wheat. p. 462–471. In: E.G. Heyne (Ed). Wheat and Wheat Improvement (second edition).Google Scholar
  51. Koebner R.M.D. & K.W. Shepherd, 1985. Induction of recombination between rye chromosome 1RL and wheat chromosomes. Theor. Appl. Genet. 71: 208–215.Google Scholar
  52. Koebner R.M.D. & K.W. Shepherd, 1986. Controlled introgression to wheat of genes from rye chromosome arm 1RS by induction of allosyndesis. I. Isolation of recombinants. Theor. Appl. Genet. 73: 197–208.Google Scholar
  53. Koebner, R.M.D. & K.W. Shepherd, 1988. Isolation and agronomic assessment of allosyndetic recombinants derived from wheat/rye translocation 1DL·1RS carrying reduced amount of rye chromatin. p. 343–348. In: T.E. Miller & R.M.D. Koebner (Eds). Proc. 7th Int. Wheat Genet. Symp., Cambridge, England.Google Scholar
  54. Kota R.S. & J. Dvořák, 1985. A rapid technique for substituting alien chromosomes into Triticum aestivum and determining their homoeology. Can. J. Genet. Cytol. 27: 549–558.Google Scholar
  55. Lapitan N.L.V., R.G. Sears & B.S. Gill, 1984. Translocations and other karyotypic structural changes in wheat × rye hybrids regenerated from tissue culture. Theor. Appl. Genet. 68: 547–554.Google Scholar
  56. Lapitan N.L.V., R.G. Sears, A.L. Rayburn & B.S. Gill, 1986. Wheatrye translocations. J. Hered. 77: 415–419.Google Scholar
  57. Larkin P.J. & W.R. Scowcroft, 1981. Somaclonal variation—a novel source of variability from cell cultures for plant improvement. Theor. Appl. Genet. 60: 197–214.Google Scholar
  58. Larkin, P.J., L.H. Spindler & P.M. Banks, 1990. The use of cell culture to restructure plant genomes for introgressive breeding. p. 80–89. In: G. Kimber (Ed). Proc. 2nd Int. Symp. Chromo. Engi. in Plants, Columbia, Missouri, USA.Google Scholar
  59. Laurie D.A., 1989. The frequency of fertilization in wheat × pearl millet crosses. Genome 32: 1063–1067.Google Scholar
  60. Laurie D.A. & M.D. Bennett, 1986. Wheat × maize hybridization. Can. J. Genet. Cytol. 28: 313–316.Google Scholar
  61. Laurie D.A. & M.D. Bennett, 1987. Cytological evidence for fertilization in hexaploid wheat × sorghum crosses. Plant Breed 100: 73–82.Google Scholar
  62. Laurie D.A. & M.D. Bennett, 1988. The production of haploid wheat plants from wheat × maize crosses. Theor. Appl. Genet. 76: 393–397.Google Scholar
  63. Laurie D.A. & M.D. Bennett, 1989. The timing of chromosome elimination in hexaploid wheat × maize crosses. Genome 32: 953–961.Google Scholar
  64. Le H.T., K.C. Armstrong & B. Miki, 1989. Detection of rye DNA in wheat-rye hybrids and wheat translocation stocks using total genomic DNA as a probe. Plant Mol. Biol. Rep. 7: 150–158.Google Scholar
  65. Li L.H. & Y.S. Dong, 1991. Hybridization between Triticum aestivum L. and Agropyron michnoi Roshev. I. Production and cytogenetic study of F1 hybrids. Theor. Appl. Genet. 81: 312–316.Google Scholar
  66. Limin A.E. & D.B. Fowler, 1990. An interspecific hybrid and amphiploid produced from Triticum aestivum crosses with Agropyron cristatum and Agropyron desertorum. Genome 33: 581–584.Google Scholar
  67. Liu C.J., M.D. Atkinson, C.N. Chinoy, K.M. Devos & M.D. Gale, 1992. Nonhomoeologous translocations between group 4, 5 and 7 chromosomes within wheat and rye. Theor. Appl. Genet. 83: 305–312.Google Scholar
  68. Liu, D.J., Y.Q. Weng & P.D. Chen, 1990. Transfer of scab resistance from Roegneria C. Koch (Agropyron) species into common wheat. p. 166–176. In: G. Kimber (Ed). Proc. 2nd Int. Symp. Chromo. Engi. in Plants, Columbia, Missouri, USA.Google Scholar
  69. Lu B.R. & R.von Bothmer, 1989. Cytological studies of a dihaploid and hybrid from intergeneric cross Elymus shandongensis × Triticum aestivum. Hereditas 111: 231–238.Google Scholar
  70. Lu B.R. & R.von Bothmer, 1991. Production and cytogenetic analysis of the intergeneric hybrids between nine Elymus species and common wheat (Triticum aestivum L.). Euphytica 58: 81–95.Google Scholar
  71. Lukaszewski, A.J., 1988. A comparison of several approaches in the development of disomic alien addition lines of wheat. p. 363–367. In: T.E. Miller & R.M.D. Koebner (Eds). Proc. 7th Int. Wheat Genet. Symp., Cambridge, England.Google Scholar
  72. Lukaszewski A.J. & J.P. Gustafson, 1983. Translocations and modifications of chromosomes in triticale × wheat hybrids. Theor. Appl. Genet. 64: 239–248.Google Scholar
  73. Luo M.C., C. Yen & J.L. Yang, 1992. Crossability percentages of bread wheat landraces from Sichuan Province, China with rye. Euphytica 61: 1–7. orMettin, D., W.D. Blüthner & G. Schlegel, 1973. Additional evidence on spontaneous 1B/1R wheat-rye substitutions and translocations. p. 179–184. In: E.R. Sears & L.M.S. Sears (Eds). Proc. 4th Int. Wheat Genet. Symp., Columbia, Missouri.Google Scholar
  74. McIntosh, R.A., 1988. Catalogue of gene symbols for wheat. p. 1225–1323. In: T.E. Miller & R.M.D. Koebner (Eds). Proc. 7th int. Wheat Genet. Symp., Cambridge, England.Google Scholar
  75. Mujeeb-Kazi A. & M. Bernard, 1982. Somatic chromosome variations in backcross-1 progenies from intergeneric hybrids involving some Triticeae. Cereal Res. Comm. 10: 41–44.Google Scholar
  76. Mujeeb-Kazi A. & M. Bernard, 1985. Cytogenetics of intergeneric Elymus canadensis × Triticum aestivum hybrid (n=5x=35, SHABD) and their backcross progenies with T. aestivum. Z. Pflanzenzüchtg 95: 50–62.Google Scholar
  77. Mujeeb-Kazi A., S. Roldan & J.L. Miranda, 1984. Intergeneric hybrids of Triticum aestivum L. with Agropyron and Elymus species. Cereal Res. Comm. 12: 75–79.Google Scholar
  78. Mujeeb-Kazi A., S. Roldan, D.Y. Suh, L.A. Sitch & S. Farooq, 1987. Production and cytogenetic analysis of hybrids between Triticum aestivum and some caespitose Agropyron species. Genome 29: 537–553.Google Scholar
  79. Mujeeb-Kazi A., S. Roldan, D.Y. Suh, N. Ter-Kuile & S. Farooq, 1989. Production and cytogenetics of Triticum aestivum L. hybrids with some rhizomatous Agropyron species. Theor. Appl. Genet. 77: 162–168.Google Scholar
  80. Mukai Y. & B.S. Gill, 1991. Detection of barley chromatin added to wheat by genomic in situ hybridization. Genome 34: 448–452.Google Scholar
  81. Mukai Y., B. Friebe, J.H. Hatchett, M. Yamamoto & B.S. Gill, 1993. Molecular cytogenetic analysis of radiation-induced wheatrye terminal and intercalary chromosomal translocations and the detection of rye chromatin specifying resistance to Hessian fly. Chromosoma 102: 88–95.Google Scholar
  82. Muramatsu, M., S. Kaneta, R. Ikeda, T. Uetsuki & K. Takahashi, 1983. Hybridization of Japanese indigenous Agropyron (Roegneria) species with hexaploid wheat and cytogenetics of some the F1 BF1 and amphiploid plants. p. 1041–1048. In: S. Sakamoto (Ed). Proc. 6th Int. Wheat Genet. Symp., Kyoto, Japan.Google Scholar
  83. Naranjo T., A. Roca, P.G. Goicoechea & R. Giraldez, 1987. Arm homoeology of wheat and rye chromosomes. Genome 29: 873–882.Google Scholar
  84. O'Mara J.G., 1940. Cytogenetic studies on Triticale. I. A method for determining the effects of individual Secale chromosomes on Triticum. Genetics 25: 410–408.Google Scholar
  85. Pershina L.A., O.M. Numerova, L.I. Belova, E.P. Devyatkina & V.K. Shumny, 1988. Fertility in barley × wheat hybrids H. geniculatum All × T. aestivum L., their regenerants and hybrid progeny of backcrosses to T. aestivum L. Cereal Res. Comm. 16: 157–163.Google Scholar
  86. Pickering R.A., 1983. The influence of genotype on double haploid production. Euphytica 32: 863–876.Google Scholar
  87. Plourde A., A. Comeau & C.A. St-Pierre, 1992. Barley yellow dwarf virus resistance in Triticum aestivum × Leymus angustus hybrids. Plant Breed. 108: 97–103.Google Scholar
  88. Plourde A., A. Comeau, G. Fedak & C.A. St-Pierre, 1989a. Production and cytogenetics of Triticum aestivum × Leymus innovatus. Theor. Appl. Genet. 78: 436–444.Google Scholar
  89. Plourde A., A. Comeau, G. Fedak & C.A. St-Pierre, 1989b. Intergeneric hybrids of Triticum aestivum × Leymus multicaulis. Genome 32: 282–287.Google Scholar
  90. Plourde A., G. Fedak, C.A. St-Pierre & A. Comeau, 1990. A novel intergeneric hybrid in the Triticeae: Triticum aestivum × Psathyrostachys juncea. Theor. Appl. Genet. 79: 45–48.Google Scholar
  91. Rajaram, S., C.H.E. Mann, G. Ortiz-Ferrara & A. Mujeeb-Kazi, 1983. Adaptation, stability and high yield potential of certain 1B/1R CIMMYT wheat. p. 613–621. In: S. Sakamoto (Ed). Proc. 6th Int. Wheat Genet. Symp., Kyoto, Japan.Google Scholar
  92. Raupp, W.J., B.S. Gill, B. Friebe & D.L. Wilson, 1993. The Wheat Genetics Resource Center: germplasm conservation, evaluation, and utilization. Proc. 8th Int. Wheat Genet. Symp. Beijing, China (in press).Google Scholar
  93. Riera-Lizarazu, O., H.W. Rines & R.L. Phillips, 1992. Retention of maize chromosomes in haploid oat plants from oat × maize crosses. Agronomy Abstracts p. 112.Google Scholar
  94. Riley R. & V. Chapman, 1967. Inheritance in wheat of crossability with rye. Genet. Res. 9: 259–267.Google Scholar
  95. Riley R., V. Chapman & R. Johnson, 1968. Introduction of yellowrust resistance of Aegilops comosa into wheat by genetically induced homoeologous recombination. Nature 217: 383–384.Google Scholar
  96. Riley R., J. Unrau & V. Chapman, 1958. Evidence of the origin of the B genome of wheat. J. Hered. 49: 91–98.Google Scholar
  97. Rogowsky P.M., F.L.Y. Guidet, P. Langridge, K.W. Shepherd & R.M.W. Koebner, 1991. Isolation and characterization of wheat-rye recombinants involving chromosome arm 1DS of wheat. Theor. Appl. Genet. 82: 537–544.Google Scholar
  98. Sears E.R., 1956. The transfer of leaf rust resistance from Aegilops umbellulata to wheat. Brookhaven Symp. Biol. 9: 1–21.Google Scholar
  99. Sears, E.R., 1968. Relationships of chromosomes 2A, 2B and 2D with their rye homoeologue. Proc. 3rd Int. Wheat Genet. Symp., Canberra, Australia. p. 53–61.Google Scholar
  100. Sears E.R., 1972. Chromosome engineering in wheat. p. 23–38. In: Stadler Symposia, Vol. 4. Univ. of Missouri, Columbia.Google Scholar
  101. Sears, E.R., 1978. Analysis of wheat-Agropyron recombinant chromosomes. p. 63–72. In: Interspecific Hybridization of Plant Breeding. Proc. 8th Eucarpia Congress, Madrid, Spain.Google Scholar
  102. Sears E.R., 1981. Transfer of alien genetic material to wheat. p. 75–89. In: L.T. Evans & W.J. Peacock (Eds). Wheat Science—Today and Tomorrow. Cambridge University Press, Cambridge.Google Scholar
  103. Sears, E.R., 1983. The transfer to wheat of interstitial segment of alien chromosomes. p. 5–12. In: S. Sakamoto (Ed). Proc. 6th Int. Wheat Genet. Symp., Kyoto, Japan.Google Scholar
  104. Sears E.R. & T.E. Miller, 1985. The history of Chinese Spring wheat. Cereal Res. Comm. 13: 261–263.Google Scholar
  105. Sharma H.C. & P.S. Baenziger, 1986. Production, morphology, and cytogenetic analysis of Elymus caninus (Agropyron caninum) × Triticum aestivum F1 hybrids and backcross-1 derivatives. Theor. Appl. Genet. 71: 750–756.Google Scholar
  106. Sharma H.C. & B.S. Gill, 1983a. Current status of wide hybridization in wheat. Euphytica 32: 17–31.Google Scholar
  107. Sharma, H.C. & B.S. Gill, 1983b. New hybrids between Agropyron and wheat. III. Backcross derivatives, effect of Agropyron cytoplasm and production of Agropyron addition lines. p. 213–221. In: S. Sakamoto (Ed). Proc. 6th Int. Wheat Genet. Symp., Kyoto, Japan.Google Scholar
  108. Sharp P.J., S. Chao, S. Desai & M.D. Gale, 1989. The isolation, characterization and application in the Triticeae of a set of wheat RFLP probes identifying each homoeologous chromosome arm. Theor. Appl. Genet. 78: 342–348.Google Scholar
  109. Shepherd, K.W. & A.K.M.R. Islam, 1988. Fourth compendium of wheat-alien chromosome lines. p. 1373–1395. In: T.E. Miller & R.M.D. Koebner (Eds). Proc. 7th Int. Wheat Genet. Symp., Cambridge, England.Google Scholar
  110. Simpson E., J.W. Shape & R.A. Finch, 1980. Variation between Hordeum bulbosum genotypes in their ability to produce haploids of barley, Hordeum vulgare. Z. Pflanzenzüchtg. 85: 205–211.Google Scholar
  111. Smith E.L., A.M. Schlehuber, H.C. YoungJr. & L.H. Edwards, 1968. Registration of Agent wheat. Crop Sci. 8: 511–512.Google Scholar
  112. Snape J.W., V. Chapman, J. Moss, C.E. Blanchard & T.E. Miller, 1979. The crossabilities of wheat varieties with Hordeum bulbosum. Heredity 42: 291–298.Google Scholar
  113. The, T.T., B.D.H. Latter, R.A. McIntosh, F.W. Ellison, P.S. Brennan, J. Fisher, G.J. Hollamby, A.J. Rathjen & R.E. Wilson, 1988. Grain yields of near-isogenic lines with added genes for stem rust resistance. p. 901–906. In: T.E. Miller & R.M.D. Koebner (Eds). Proc. 7th Int. Wheat Genet. Symp., Cambridge, England.Google Scholar
  114. Tsujimoto, H. & K. Noda, 1988. Chromosome breakage in wheat induced by the gametocidal gene of Aegilops triuncialis L.: Its utilization for wheat genetics and breeding. p. 455–460. In: T.E. Miller & R.M.D. Koebner (Eds). Proc. 7th Int. Wheat Genet. Symp., Cambridge, England.Google Scholar
  115. Vasil V., A. Castillo, M. Fromm & I. Vasil, 1992. Herbicide resistant fertile transgenic wheat plants obtained by micro-projectile bombardment of regenerable embryogenic callus. Bio/Technology 10: 667–674.Google Scholar
  116. Wang L.Q., H.R. Zhu, Q.L. Guan & J.K. Rong, 1986. Production of Triticum aestivum (6X)-Hordeum bulbosum (4X) alien disomic addition lines and the introgression of resistance gene(s) (WYMV) from H. bulbosum to bread wheat. Barley Genetics V. p. 359–368.Google Scholar
  117. Wang L.Q., H.R. Zhu, S.Q. Liang, Y.R. Zheng, Q.L. Guan & M.B. Yuan, 1982. A preliminary study on intergeneric crosses between the wheat variety Chinese Spring (6x) and Hordeum bulbosum (4x). Acta. Agron. Sinica 8: 95–101.Google Scholar
  118. Wang, R.R.-C., Z.W. Liu & J.G. Carman, 1993. The introduction and expression of apomixis in hybrids of wheat and Elymus rectisetus. Proc. 8th Int. Wheat Genet. Symp., Beijing, China (in press).Google Scholar
  119. Weeks J.T., O.D. Anderson & A.E. Blechl, 1993. Rapid production of multiple independent lines of fertile transgenic wheat. Plant Physiol 102: 1077–1084.Google Scholar
  120. Werner J.E., T.R. Endo & B.S. Gill, 1992. Toward a cytogenetically based physical map of the wheat genome. Proc. Natl. Acad. Sci. USA 89: 11307–11311.Google Scholar
  121. Yen, C., D.Q. Dai & M.C. Luo, 1986. The high compatibility resources of wheat for generic hybridization among Secale and Aegilops. Proc. Int. Triticale Symp., p. 42–52.Google Scholar
  122. Yen, C., M.C. Luo & J.L. Yang, 1988. The origin of the Tibetan weedrace of hexaploid wheat, Chinese Spring, Chengdu-guantou and other landraces of the White Wheat Complex from China. p. 175–179. In: T.E. Miller & R.M.D. Koebner (Eds). Proc. 7th Int. Wheat Genet. Symp., Cambridge, England.Google Scholar
  123. Yen Y. & D. Liu, 1987. Production, morphology, and cytogenetics of intergeneric hybrids of Elymus L. species with Triticum aestivum L. and their backcross derivatives. Genome 29: 689–694.Google Scholar
  124. Zeller, F.J., 1973. 1B/1R wheat-rye chromosome substitutions and translocations. p. 209–221. In: E.R. Sears & L.M.S. Sears (Eds). Proc. 4th Wheat Genet. Symp., Columbia, Missouri.Google Scholar
  125. Zenkteler M. & W. Nitzsche, 1984. Wide hybridization experiments in cereals. Theor. Appl. Genet. 68: 311–315.Google Scholar
  126. Zeven A.C., 1987. Crossability percentages of some 1400 bread wheat varieties and lines with rye. Euphytica 36: 299–319.Google Scholar
  127. Zhang H.B. & J. Dvořák, 1989. Isolation of repeated DNA sequences from Lophopyrum elongatum for detection of Lophopyrum chromatin in wheat genomes. Genome 33: 283–293.Google Scholar
  128. Zhang H.B. & J. Dvořák, 1990. Characterization and distribution of an interspersed repeated nucleotide sequence from Lophopyrum elongatum and mapping of a segregation-distortion factor with it. Genome 33: 927–936.Google Scholar
  129. Zhang X., Z. Li & S. Chen, 1992. Production and identification of three 4Ag(4D) substitution lines of Triticum aestivum—Agropyron: relative transmission rate of alien chromosomes. Theor. Appl. Genet. 83: 707–714.Google Scholar
  130. Zheng Y., M. Luo, C. Yen & J. Yang, 1992. Chromosome location of a new crossability gene in common wheat. Wheat Infor. Ser. 75: 36–40.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Jiming Jiang
    • 1
  • Bernd Friebe
    • 1
  • Bikram S. Gill
    • 1
  1. 1.Wheat Genetics Resource CenterKansas State UniversityManhattanUSA

Personalised recommendations