Hydrobiologia

, Volume 317, Issue 3, pp 209–220 | Cite as

An empirical model for sediment resuspension in shallow lakes

  • David P. Hamilton
  • Stuart F. Mitchell
Article

Abstract

Suspended solids concentrations were measured at routine 2–3 week intervals and on additional windy days for at least one year in each of seven shallow (mean depth < 2 m) south Island, New Zealand lakes. Surface wave characteristics were estimated from water depths and local meteorological data using a shallow-water wave forecasting model for fetch-limited waves. Bottom shear stresses were computed from surface wave characteristics for the sampling stations and for a hypothetical lake-average station. The calculated shear stresses were, on average, much better predictors of suspended solids concentrations than alternative models using two different functions of wind speed, wave height2/depth or wavelength/depth. A combination of the sample station and lake average shear stresses provided slightly better predictions than the sample station values alone, suggesting that currents also contribute significantly to the concentration at a given point. Regressions of suspended solids on the combined functions had r2 values ranging from 0.74–0.73 in the seven lakes. The slopes of these regressions were negatively related to the settling velocity of the lowest quartile of the sediment, and to macrophyte biomass, in multiple regression (r2 = 0.94, p < 0.01).

Key words

suspended solids wave action shear stress macrophytes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aalderink, R. H., L. Lijklema, J. Breukelman, W. van Raaphorst & A. G. Brinkman, 1984. Quantification of wind induced resuspension in a shallow lake. Wat. Sci. Technol. 17: 903–914.Google Scholar
  2. Barica, J., 1974. Extreme fluctuations in water quality of eutrophic fish kill lakes: effect of sediment mixing.Water Res. 8: 881–888.Google Scholar
  3. Bengtsson, L. & T. Hellström, 1992. Wind resuspension in a small shallow lake. Hydrobiologia 241: 163–172.Google Scholar
  4. Bengtsson, L., T. Hellström & L. Rakoczi, 1990. Redistribution of sediments in three Swedish lakes. Hydrobiologia 192: 167–181.Google Scholar
  5. Bennett, J. R., 1974. On the dynamics of wind-driven lake currents. J. Phys. Oceanogr. 4: 400–414.Google Scholar
  6. Bruton, M. N., 1985. The effect of suspensoids on fish. Hydrobiologia 125: 221–241.Google Scholar
  7. Carper, G. L. & R. W. bachmann, 1984. Wind resuspension of sediments in a prairie lake. Can. J. Fish. Aquat. Sci. 41: 1763–1767.Google Scholar
  8. Cavanié, A. G. 1980. Evaluation of standard error in the estimation of mean and significant wave heights as well as mean period from records of finite length. In: Climatologie de la Mer; Sea Climatology, pp. 73–78. Editions Technip.Google Scholar
  9. CERC, 1973. Shore protection manual, Vol. I. U. S. Army Coastal Eng. Res. Center, Ft. Belvoir, Va.Google Scholar
  10. CERC, 1977. Shore protection manual. Vol. I. U. S. Army Coastal Eng. Res. Center, Ft. Belvoir, Va.Google Scholar
  11. Cole, P. & G. V. Miles, 1983. Two-dimensional model of mud transport. J. Hydraul. Eng., ASCE 109: 1–12.Google Scholar
  12. Dyer, K. R., 1986. Coastal and estuarine sediment dynamics. Wiley: 342 pp.Google Scholar
  13. Einstein, H. A. & R. B. Krone, 1962. Experiments to determine modes of cohesive sediment transport in salt water. J. Geophys. Res. 67: 1451–1461.Google Scholar
  14. Fukuda, M. K. & W. Lick, 1980. The entrainment of cohesive sediments in freshwater. J. Geophys. Res. 85: 2813–1824.Google Scholar
  15. Gerbeaux, P. J., 1989. Aquatic plant decline in Lake Ellesmere. Unpubl. Ph. D. Thesis, Lincoln College, New Zealand: 276 pp.Google Scholar
  16. Gerbeaux, P. J. & J. Ward, 1986. The disappearance of marcrophytes and its importance in the management of shallow lakes in New Zealand. In: Proc. European Weed Res. Soc., 7th Symposium on Aquatic Weeds, pp. 119–124.Google Scholar
  17. Gons, H. J., R. Veeningen & R. van Keulen, 1986. Effects of wind on a shallow lake ecosystem: resuspension of particles in the Loosdrecht Lakes. Hydrobiol. Bull. 20: 109–120.Google Scholar
  18. Håkanson, L., 1977. The influence of wind, fetch and water depth on the sediments in Lake Vånern, Sweden. Can. J. Earth Sci. 14: 397–412.Google Scholar
  19. Håkanson, L>, 1981. On lake bottom dynamics — the energy-topography factor. Can. J. Earth. Sci. 18: 899–909.Google Scholar
  20. Håkanson, L., 1982. Bottom dynamics in lakes. Hydrobiologia 91: 9–22.Google Scholar
  21. Hamilton, D. P., 1990. Sediment resuspension by wind in shallow lakes. Unpubl. Ph. D. thesis. University of Otago, New Zealand: 249 pp.Google Scholar
  22. Hamilton, D. P. & S. F. Mitchell, 1988. Effects of wind on nitrogen, phophorous, and chlorophyll in a shallow New Zealand lake. Verh. Internat. Verein. Limnol. 23: 624–628.Google Scholar
  23. Hawley, N. & B. M. Lesht, 1992. Sediment resuspension in Lake St. Clair. Limnol. Oceanogr. 37: 1720–1737.Google Scholar
  24. Ijima, T. & F. L. W. Tang, 1966. Numerical calculation of wind waves in shallow water. In Proc. 10th Int. Conf. Coastal Eng., ASCE. pp. 38–48. Tokyo.Google Scholar
  25. Irwin, J., 1979.Lake Forsyth bathymetry. N.Z. Oceanographic Inst. Rep., DSIR, N.Z.Google Scholar
  26. Irwin, J., W. Del Main & M. W. Burrows, 1988. Bathymetric survey of Lake Ellesmere. N.Z. Ocenaographic Inst. Rep., DSIR, N.Z.Google Scholar
  27. James, W. F. & J. W. Barko, 1990. Macrophyte influences on the zonation of sediment accretion and composition in a north-temperature reservoir. Arch. Hydrobiol. 120: 129–142.Google Scholar
  28. Jupp, B. P. & D. H. N. Spence, 1977. Limitations on macrophytes in a eutrophic lake, Loch Leven. 2. Wave action, sediments and waterfowl grazing. J. Ecol. 65: 431–436.Google Scholar
  29. Kachel, N. B. & R. W. Sternberg, 1971. Transport of bedload as ripples during an ebb current. Mar Geol. 10: 229–244.Google Scholar
  30. Knowles, C. E., 1982. On the effects of finite depth on wind-wave spectra: 1. A comparison with deep-water equilibrium-range slope and other spectral parameter. J. Phys. Oceanogr. 12: 556–568.Google Scholar
  31. Komar, P. D. & M. C. Miller, 1975. On the comparison between the threshold of sediment motion under waves and unidirectional currents with a discussion of the practical evaluation of the threshold. J. Sed. Petrol. 45: 362–367.Google Scholar
  32. Kristensen, P., M. Søndergaard and E. Jeppesen, 1992. Resuspension in a shallow eutrophic lake. Hydrobiologia. 228: 101–109.Google Scholar
  33. Lam, D. C. L. & J.-M. Jaquet, 1976. Computations of physical transport and regeneration of phosphorous in Lake Erie, fall 1970. J. Fish. Res. Bd. Can. 33: 550–563.Google Scholar
  34. Lavelle, J. W., H. O. Mofjeld & E. T. Baker, 1984. An in situ erosion rate for fine-grained marine sediment. J. Geophys. Res. 89: 6543–6552.Google Scholar
  35. Lick, W., 1982. Entrainment, deposition and transport of fine sediments in lake. Hydrobiologia 91: 31–40.Google Scholar
  36. Livingstone, M. E., B. J. Biggs & J. S. Gifford, 1986. Inventory of New Zealand lakes. Part II, South Island, Water and Soil Publ. 81: 193 pp.Google Scholar
  37. Lonsdale, P. & J. B. Southard, 1974. Experimental erosion of North Pacific red clay. Mar. Geol. 17: M51-M60.Google Scholar
  38. Luettich, R. A., Jr., D. R. F. Harleman & L. Somlyódy, 1990. Dynamic behavior od suspended sediment concentrations in a shallow lake perturbed by episodic wind events. Limnol. Ocenogr. 35: 1050–1067.Google Scholar
  39. McKinnon, S. L. C., 1989. The interrelationship between phytoplankton, submerged macrophytes and black swans (Cygnus atratus) in New Zealand lakes — test of two models, Unpubl. M.Sc. thesis, University of Otago, New Zealand: 74 pp.Google Scholar
  40. McKinnon, S. L. C. & S. F. Mitchell, 1994. Eutrophication and black swan (Cygnus atratus Latham) populations: test of two sample relationships. Hydrobiologia 279–280 (Dev. Hydrobiol. 96): 163–170.Google Scholar
  41. Mehta, A. J., T. M. Parchure, J. G. Dixit & R. Ariathurai, 1982. Resuspension potential of deposited cohesive sediment beds. In V. Kennedy (ed.), Estuarine Comparisons. Academic Press, New York: 591–609.Google Scholar
  42. Mitchell, S. F., 1989. Primary production in a shallow eutrophic lake dominated alternately by phytoplankton and by submerged macrophytes. Aquat. Bot. 33: 101–110.Google Scholar
  43. N.Z. Meteorological Service, 1987. Meterological observations for 1987. Misc. Pub. N.Z. Met. S. 109: 104 pp.Google Scholar
  44. Partheniades, E., 1965. Erosion and deposition of cohesive soils. J. Hydraul. Div., ASCE 91: 105–139.Google Scholar
  45. Phillips, G. L., O. Ominson & B. Moss, 1978. A mechanism to account for macrophyte decline in progressively eutrophicated freshwaters. Aquat. Bot. 4: 103–126.Google Scholar
  46. Scheffer, M., 1990. Multiplicity of stable states in freshwater systems. Hydrobiology 200/201 (Dev. Hydrobiol. 61): 475–486.Google Scholar
  47. Scheffer, M. S. H. Hosper, M.-L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends in Ecology and Evolution 8: 275–279.Google Scholar
  48. Sheng, Y. P., 1979. Modelling sediment transport in a shallow lake. In: P. Hamilton & K. B. Macdonald (eds.), Estuarine and Wetland Processes, pp 299–237. Plenum Press, N. Y.Google Scholar
  49. Sheng, Y. P. & W. Lick, 1979. The transport and resuspension of sediments in a shallow lake. J. Geophys. Res. 84: 1809–1826.Google Scholar
  50. Smith, I.R., 1979. Hydraulic conditions in isothermal lakes. Freshwat. Biol. 9: 119–145.Google Scholar
  51. Somlyódy, L., 1981. Modelling complex environmental system: The Lake Balaton study. WP-81–108, IIASA, Laxenburg, Austria: 14–19.Google Scholar
  52. Somlyódy, L., 1982. Water-quality modelling: a comparison of transport oriented and ecology oriented approaches. Ecol. Modelling 17: 183–207.Google Scholar
  53. Sonlyódy, L., 1986. Wind induced sediment resuspension in shallow lakes. In: Water Quality Modelling in the Inland Natural Environment, pp. 287–298. The Fluid Engineering Centre, England.Google Scholar
  54. Vlag, D. P., 1992. A model for predicting waves and suspended silt concentration in a shallow lake. Hydrobiologia 235/236 (Dev. Hydrobiol. 75): 119–131.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • David P. Hamilton
    • 1
  • Stuart F. Mitchell
    • 1
  1. 1.Department of ZoologyUniversity of OtagoDunedinNew Zealand

Personalised recommendations