, Volume 91, Issue 1, pp 21–30 | Cite as

Detection of linkage between RFLP markers and genes affecting anthocyanin pigmentation in maize (Zea mays L.)

  • Pierre Sourdille
  • Sylvie Baud
  • Philippe Leroy


Linkages between molecular markers and genes involved in the expression of agronomical traits have already been described in all of the major crops. In most cases, the genetic model underlying the Quantitative Traits Loci (QTL) is discussed. Here, Restriction Fragment Length Polymorphisms (RFLPs) and Mapmaker-QTL have been used to pinpoint seven regions of the genome significantly correlated with four pigmentation qualitative traits of maize (Zea mays L.). Two of these, located on chromosomes 2 and 10, explain most of the variation of these traits. The R and B gene loci known to be involved in the regulation of the anthocyanin pathway map to the same regions and we suggest that these loci could be the candidate genes involved in the correlations detected with RFLPs. This type of result is in accordance with the hypothesis of the candidate gene which supposes that, if we have a very high density map of randomly-selected cDNA clones, it should theoretically be possible to associate a cloned genic sequence with a phenotypic trait where correlations are found.

Key words

anthocyanin candidate gene linkage maize RFLP Zea mays 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beavis, W.D., D. Grant, M. Albertsen & R. Fincher, 1991. Quantitative trait loci for plant height in four maize populations and their associations with qualitative genetic loci. Theor Appl Genet 83: 141–145.Google Scholar
  2. Becker, R.A., J.M. Chambers & A.R. Wilks, 1992. The new S language: A programming environment for data analysis and graphics. Wadsworth & Brooks. Cole Advanced Books and Software. Pacific Grove, Califormia.Google Scholar
  3. Beckmann, J.S. & M. Soller, 1983. Restriction Fragment Length Polymorphisms in genetic improvement: methodologies, mapping and costs. Theor Appl Genet 67: 35–43.Google Scholar
  4. Beckmann, J.S. & M. Soller, 1986. Restriction Fragment Length Polymorphisms and genetic improvement of agricultural species. Euphytica 35: 111–124.Google Scholar
  5. Beckmann, J.S. & M. Soller, 1988. Detection of linkage between marker loci and loci affecting quantitative traits in crosses between segregating populations. Theor Appl Genet 76: 228–236.Google Scholar
  6. Bernatzky, B. & S.D. Tanksley, 1986. Toward a saturated linkage map in tomato based on isozymes and random cDNA sequences. Genetics 112: 887–898.Google Scholar
  7. Birnboim, H.C. & J. Doly, 1979. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7: 1513–1523.Google Scholar
  8. Botstein, D., R.L. White, M. Skolnik & R.W. Davis, 1980. Construction of a genetic linkage map in man using Restriction Fragment Length Polymorphisms. Am J Hum Genet 32: 314–331.Google Scholar
  9. Burr, B., S.V. Evola, F.A. Burr & J.S. Beckmann, 1983. The application of Restriction Fragment Length Polymorphism to plant breeding. Plenum Press, New York and London 5: 45–59.Google Scholar
  10. Burr, B., F.A. Burr, K.H. Thompson, M.G. Albertsen & C.W. Stuber, 1988. Gene mapping with recombinant inbreds in maize. Genetics 118: 519–526.Google Scholar
  11. Chandler, V.L., J.P. Radicella, T.P. Robbins, J. Chen & J. Turks, 1989. Two regulatory genes of maize anthocyanin pathway are homologous: Isolation of B utilizing R genomic sequences. Plant Cell 1: 1175–1183.Google Scholar
  12. Clark, L. & J. Carbon, 1980. Isolation of a yeast centromere and construction of small functional circular chromosomes. Nature 287: 504–509.Google Scholar
  13. Coe, E.H. & M.G. Neuffer, 1977. The genetics of corn. In: G.F. Sprague (Ed.). Corn and Corn Improvement. pp. 111–223. Am Soc Agron, Madison, WI.Google Scholar
  14. Coe, E.H., M.G. Neuffer & D.A. Hoisington, 1988. The genetics of corn. In: G.F. Sprague & J. Dudley (Eds). Corn and Corn Improvement. pp. 81–258. Am Soc Agron, Madison, WI.Google Scholar
  15. Cone, K.C., F.A. Burr & B. Burr, 1986. Molecular analysis of the maize anthocyanin regulatory locus C1. Proc Natl Acad Sci USA 83: 9631–9635.Google Scholar
  16. Dagnelie, P., 1975. Théories et méthodes statistiques. Applications agronomiques. Vol. 2, 2nd ed. 463 pp.Google Scholar
  17. Dellaporta, S., I. Greenblat, J. Kermicle, J.B. Hicks & S. Wessler, 1988. Molecular cloning of the maize R-nj allele by transposontagging with Ac. In: J.P. Gustafson & R. Appels (Eds). Chromosome Structure and Function: Impact of New Concepts. 18th Stadler Genetics Symposium. pp. 263–282. Plenum Press, New York.Google Scholar
  18. Dennis, E.S., M.M. Sachs, W.L. Gerlach, E.J. Finnegan & W.J. Peacock, 1985. Molecular analysis of the Alcohol Dehydrogenase 2-Adh2 gene of maize. Nucl Ac Research 13 (3): 727–735.Google Scholar
  19. Dooner, H.K., 1982. Gene-enzyme relationships in anthocyanin biosynthesis in maize. In: W.F. Sheridan (Ed.). Maize for Biological Research. pp. 123–128. University Press, Grand Forks, ND.Google Scholar
  20. Dooner, H.K. & O.E. Nelson, 1977. Genetic control of UDP glucose:flavonol 3-O-glucosyl transferase in the endosperm of maize. Biochem Genet 15: 509–519.Google Scholar
  21. Edwards, M.D., C.W. Stuber & J.F. Wendel, 1987. Molecular-markers-facilitated investigation in maize. I: Numbers, genomic distribution and type of gene action. Genetics 116: 113–125.Google Scholar
  22. Grodzicker, T., J. Williams, P. Sharp & J. Sambrook, 1974. Physical mapping of temperature-sensitive mutations of adenovirus. Cold Spring Harbor Symp Quant Biol 39: 439–445.Google Scholar
  23. Haldane, J.B.S., 1919. The combination of linkage values, and the calculation of distances between the loci of linked factors. J Genet 8: 299–309.Google Scholar
  24. Helentjaris, T., 1987. A genetic linkage map for maize based on RFLPs. Trends Genet 38: 217–221.Google Scholar
  25. Helentjaris, T., 1991. Thoughts on future efforts for developing the maize genetics linkage map using RFLPs. Maize Genet Coop Newslet 65: 103–104.Google Scholar
  26. Helentjaris, T., G. King, M. Slocum, C. Siedenstrang & S. Wegman, 1985. Restriction Fragment Polymorphisms as probes for plant diversity and their development as tools for applied plant breeding. Plant Mol Biol 5: 109–118.Google Scholar
  27. Helentjaris, T., M. Slocum, S. Wright, A. Schaefer & J. Nienhuis, 1986. Construction of genetic linkage maps in maize and tomato using Restriction Fragment Length Polymorphisms. Theor Appl Genet 72: 761–769.Google Scholar
  28. Helentjaris, T., D. Weber & S. Wright, 1988. Identification of the genomic locations of duplicate nucleotide sequences in maize by analysis of Restriction Fragment Length Polymorphisms. Genetics 118: 353–363.Google Scholar
  29. Jarayam, C. & P.A. Peterson, 1990. Anthocyanin pigmentation and transposable elements in maize aleurone. Plant Breed Rev 8: 91–137.Google Scholar
  30. Lander, E.S. & D. Botstein, 1989. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121: 185–199.Google Scholar
  31. Mather, K. & J.L. Jinks, 1971. Biometrical genetics. The study of continuous variation. Chapman & Hall Ltd, London. 382 pp.Google Scholar
  32. Nelson, J.C., A.E.van Deynze, E. Autrique, M.E. Sorrells, Y.H. Lu, M. Merlino, M. Atkinson & P. Leroy, 1995a. Molecular mapping in bread wheat. Homoeologous group 2. Genome 38: 516–524.Google Scholar
  33. Nelson, J.C., A.E.van Deynze, E. Autrique, M.E. Sorrells, Y.H. Lu, S. Negre, M. Bernard & P. Leroy, 1995b. Molecular mapping in bread wheat. Homoeologous group 3. Genome 38: 525–533.Google Scholar
  34. Nelson, J.C., A.E. van Deynze, M.E. Sorrells, Y.H. Lu, M. Atkinson, M. Bernard, P. Leroy, J. Faris & J.A. Anderson, 1995c. Molecular mapping of wheat: major genes and rearrangements in homoeologous groups 4,5 and 7. Genetics 141 (in press).Google Scholar
  35. Murigneux, A., D. Barloy, P. Leroy & M. Beckert, 1993. Molecular and morphological evaluation of doubled haploid lines in maize. 1: Homogeneity within DH lines. Theor Appl Genet 86: 837–842.Google Scholar
  36. Paterson, A.H., E.S. Lander, J.D. Hewitt, S. Peterson, S.E. Lincoln & S.D. Tanksley, 1988. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335: 721–726.Google Scholar
  37. Perrot, G.H. & K.C. Cone, 1989. Nucleotide sequence of the maize R-S gene. Nucl Ac Res 17 (19): 8003.Google Scholar
  38. Robertson, D.S., 1985. A possible technique for isolating genic DNA for quantitative traits in plants. J Theor Biol 117: 1–10.Google Scholar
  39. Sax, K., 1923. The association of size differences with seed-coat pattern and pigmentation in Phaseolus vulgaris. Genetics 8: 552–560.Google Scholar
  40. Schwarz-Sommer, Z., N. Shepherd, E. Tacke, A. Gierl, W. Rohde, L. Leclercq, M. Mattes, R. Berndtgen, P. Peterson & H. Saedler, 1987. Influence of transposable elements on the structure and function of the A1 gene of Zea mays. EMBO J 6: 287–294.Google Scholar
  41. Shen, B, N. Carniero, I. Torres-Jerez, B. Stevenson, T. McCreery, T. Helentjaris, C. Baysdorfer, E. Almira, R.J. Ferl, J.E. Habben & B. Larkins, 1994. Partial sequencing and mapping of clones from two maize cDNA libraries. Plant Biol Mol 26: 1085–1101.Google Scholar
  42. Soller, M. & J.S. Beckmann, 1983. Genetic polymorphism in varietal identification and genetic improvement. Theor Appl Genet 67: 25–33.Google Scholar
  43. Soller, M. & J.S. Beckmann, 1990. Marker-based mapping of quantitative trait loci using replicated progenies. Theor Appl Genet 80: 205–208.Google Scholar
  44. Styles, E.D., O. Ceska & K.T. Seah, 1973. Developmental differences in action of R and B alleles in maize. Can J Genet Cytol 15: 59–72.Google Scholar
  45. Wienand, U., U. Weydemann, U. Niesbach-Kloesgen, P.A. Peterson & H. Saedler, 1986. Molecular cloning of the c2 locus of Zea mays, the gene coding for chalcone synthase. Mol Gen Genet 203: 202–207.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Pierre Sourdille
    • 1
  • Sylvie Baud
    • 1
  • Philippe Leroy
    • 1
  1. 1.Groupe LIMAGRAINLaboratoire BIOCEMAubièreFrance

Personalised recommendations