Advertisement

Plant Growth Regulation

, Volume 5, Issue 1, pp 59–66 | Cite as

Vitrification of carnation in vitro: Changes in cell wall mechanical properties, cellulose and lignin content

  • C. Kevers
  • R. Prat
  • Th. Gaspar
Article

Abstract

Vitrification of internodes of carnation was brought about by culturing in liquid medium. Cell wall extensibility of these internodes was kinetically followed in comparison to that of normal plants using the constant stress method. Liquid culture induced increased immediate and total deformation capacities of the walls from the second day. Measurements indicated that these deformation capacities involved plastic properties rather than elastic ones. These changes were paralleled by decreased relative levels of cellulose and lignin.

Key words

vitrification Dianthus caryophyllus cell wall extension cellulose lignification carnation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alibert G and Boudet A (1979) La lignification chez le peuplier.I. Mise au point d'une méthose de dosage et d'analyse monomérique des lignines. Physiol Vég 17: 67–74Google Scholar
  2. 2.
    Anonymous (1985) Regeneration and vitrification: Role of ethylene. Agricell Report, 14–15 AugustGoogle Scholar
  3. 3.
    Boyer N, Gaspar Th and Lamond M (1979) Modifications des isoperoxydases et de I'allongement des entre-noeuds de Bryone à la suite d'irritations mécaniques. Z Pflanzenphysiol 93: 459–470Google Scholar
  4. 4.
    Cleland RE (1967) Extensibility of isolated cell walls: Measurements and changes during cell elongation. Planta 74: 197–209Google Scholar
  5. 5.
    Cleland RE (1981) Wall extensibility: Hormones and wall extension In: W Tanner and F Loewus, eds Encyclopedia of Plant Physiology, new series, Vol 13 B Plant carbohydrates II pp 255–269. Berlin, Heidelberg, New York: Springer VerlagGoogle Scholar
  6. 6.
    Cleland RE (1983) The capacity for acid-induced wall loosening as a factor in the control of Avena coleoptile cell elongation. J Exp Bot 34: 676–680Google Scholar
  7. 7.
    Coartney JS and Morré DJ (1980) Studies on the role of wall extensibility in the control of cell expansion. Bot Gaz 141: 56–62Google Scholar
  8. 8.
    De Proft MP, Van den Broek G and De Greef JA (1986) Involvement of ethylene on senescence and vitrification of in vitro cultured miniroses. Acta Hort: In pressGoogle Scholar
  9. 9.
    Earle E and Langhans R (1975) Carnation propagation from shoot tips cultured in liquid medium. Hort Sci 10: 608–610Google Scholar
  10. 10.
    Gaspar Th, Kevers C, Debergh P, Maene L, Paques M and Boxus P (1986) Vitrification: Morphological, physiological and ecological aspects. In JMBonga and DJDurzan, eds. Tissue Culture in Forestry, in press, The Hague, Boston, London: Martinus Nijhoff/Dr W JunkGoogle Scholar
  11. 11.
    Goldberg R, Catesson AM and Czaninski Y (1983) Some properties of syringaldazine oxidase: a peroxidase specifically involved in the lignification processes. Z Pflanzenphysiol 110: 267–279Google Scholar
  12. 12.
    Hedegus P and Phan CT (1983) Actions de phénols sur les malformations observées chez les porte-greffes de pommiers M-26 et 0–3 cultivés in vitro. Rev Can Biol Exptl 42: 33–38Google Scholar
  13. 13.
    Johnson DB, Moore WE and Zank LC (1961) The spectrophotometric determination of lignins in small wood samples. TAPPI (Technical Association of the Pulp and Pepper Industry) 44: 793–798Google Scholar
  14. 14.
    Kevers C, Coumans M, Coumans-Gillès MF, Gaspar Th (1984) Physiological and biochemical events leading to vitrification of plants cultured in vitro. Physiol Plant 61: 69–74Google Scholar
  15. 15.
    Kevers C and Gaspar Th (1985a) Soluble, membrane and wall peroxidases, phenylalanine ammonia-lyase, and lignin changes in relation to vitrification of carnation tissues cultured in vitro. J Plant Physiol 118: 41–48Google Scholar
  16. 16.
    Kevers C and Gaspar Th (1985b) Vitrification of carnation in vitro: Changes in ethylene production, ACC level and capacity to convert ACC to ethylene. Plant Cell Tissue Organ Culture 4: 215–223Google Scholar
  17. 17.
    Letouze R and Daguin F (1983) Manifestation spontanée et aléatoire d'une croissance anormale en culture in vitro. Recherche de marqueurs métaboliques. Rev Can Biol Exptl 42: 23–28Google Scholar
  18. 18.
    Marigo M and Boudet AM (1980) Relation polyphénols-croissance, lignification et limitation de croissance chez Lycopersicum esculentum. Physiol Plant 49: 425–430Google Scholar
  19. 19.
    Paques M and Boxus Ph (1984) Comparative study of vitreous and non vitreous plantlets of apple rootstock M-26 cultivated in vitro. Abstr Book, 4 th Congr Fed Eur Soc Plant Physiol, Strasbourg pp 282–283Google Scholar
  20. 20.
    Phan CT and Letouze R (1983) A comparative study of chlorophyll, phenolic and protein contents, and of hydroxycinnamate: CoA ligase activity of normal and vitreous plants (Prunus avium L.) obtained in vitro. Plant Sci Lett 31: 323–327Google Scholar
  21. 21.
    Prat R and Goldberg R (1984) Relationships between auxin- and acid-induced growth in Vigna radiata hypocotyl segments. Physiol Plant 61: 51–57Google Scholar
  22. 22.
    Roberts LW and Miller AR (1983) Is ethylene involved in xylem differentiation? Vistas Plant Sci 6: 1–24Google Scholar

Copyright information

© Martinus Nijhoff/Dr W. Junk Publishers 1987

Authors and Affiliations

  • C. Kevers
    • 1
  • R. Prat
    • 2
  • Th. Gaspar
    • 1
  1. 1.Hormonologie fondamentale et appliquée, Institut de Botanique B22Université de LiègeLiègeBelgium
  2. 2.Laboratoire des Biomembranes et Surfaces cellulaires végétalesEcole Normale supérieureParisFrance

Personalised recommendations