Advertisement

Photosynthesis Research

, Volume 40, Issue 3, pp 279–286 | Cite as

Evidence for the existence of trimeric and monomeric Photosystem I complexes in thylakoid membranes from cyanobacteria

  • Jochen Kruip
  • Dirk Bald
  • Egbert Boekema
  • Matthias Rögner
Regular Papers

Abstract

In cyanobacteria, solubilization of thylakoid membranes by detergents yields both monomeric and trimeric Photosystem I (PS I) complexes in variable amounts. We present evidence for the existence of both monomeric and trimeric PS I in cyanobacterial thylakoid membranes with the oligomeric state depending ‘in vitro’ on the ion concentration. At low salt concentrations (i.e.≤10 mM MgSO4) PS I is mainly extracted as a trimer from these membranes and at high salt concentrations (i.e.≥150 mM MgSO4) nearly exclusively as a monomer, irrespective of the type of salt used (i.e. mono- or bivalent ions) and the temperature (i.e. 4°C or 20°C). Once solubilized, the PS I trimer is stable over a wide range of ion concentrations (i.e. beyond 0.5 M). A model is presented which suggests a monomer-oligomer equilibrium of PS I, but also of PS II and the cyt. b6/f-complex in the cyanobacterial thylakoid membrane. The possible physiological role of this equilibrium in the regulation of state transitions is discussed.

Key words

cyanobacteria HPLC monomer Photosystem I state transitions trimer 

Abbreviations

β-DM

dodecyl-β-D-maltoside

Chl

chlorophyll

cyt. b6f

cytochrome b6f complex

EM

electron microscopy

HPLC

high performance liquid chromatography

LDAO

N, N-dimethyl-N-dodecyl amine oxide

MES

4-morpholino ethane sulfonic acid

PAGE

polyacrylamide gel electrophoresis

PBS

phycobilisome

PS

photosystem

SDS

sodium dodecyl sulfate

2D

two dimensional

3D

three dimensional

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen JF, Sanders CE and Holmes NG (1985) Correlation of membrane protein phosphorylation with excitation energy distribution in the cyanobacterium Synechococcus 6301. FEBS Lett 193: 271–275CrossRefGoogle Scholar
  2. Allen JF (1992) Protein phosphorylation in regulation of photosynthesis. Biochim Biophys Acta 1098: 275–335PubMedGoogle Scholar
  3. Almog O, Shoham G, Michaeli D and Nechushtai R (1991) Monomeric and trimeric forms of the Photosystem I reaction center of Mastigocladus laminosus: Crystallisation and preliminary characterization. Proc Natl Acad Sci USA 88: 5312–5316PubMedGoogle Scholar
  4. Almog O, Shoham G and Nechushtal R (1992) Photosystem I: Composition, organization and structure. In: Barber J (ed) The Photosystems: Structure, Function and Molecular Biology Topics in Photosynthesis, Vol 11, pp 443–469 Elsevier, AmsterdamGoogle Scholar
  5. Arnon DI (1949) Copper enzymes in isolated chloroplasts: Polyphenoloxidase in Beta vulgaris. Plant Physiol 24: 1–15Google Scholar
  6. Bald D, Kruip J, Boekema EJ and Rögner M (1992) Structural investigations on Cyt.b6/f-complex and PS I-complex from the cyanobacterium Synechocystis PCC 6803. In: Murata N, (ed) Research in Photosynthesis, Vol I, pp 629–632. Kluwer Academic Publishers, DordrechtGoogle Scholar
  7. Boekema EJ, Dekker JP, van Heel MG, Rögner M, Saenger W, Witt I and Witt HT (1987) Evidence for a trimeric organization of the Photosystem I complex from the thermophilic cyanobacterium Synechococcus sp. FEBS Lett 217: 283–286CrossRefGoogle Scholar
  8. Boekema EJ, Boonstra AF, Dekker JP and Rögner M (1994) Electron microscopic structural analysis of Photosystem I, Photosystem II and the cytochrome b/6f complex from green plants and cyanobacteria. J Bioenerg Biomem 26: 17–29Google Scholar
  9. Böttcher B, Gräber P and Boekema EJ (1992) The structure of Photosystem I from the thermophilic cyanobacterium Synechococcus sp.determined by electron microscopy of two-dimensional crystals. Biochim Biophys Acta 1098: 131–143PubMedGoogle Scholar
  10. Chitnis VP, Xu Q, Yu L, Golbeck JH, Nakamoto H, Xie D-L and Chitnis PR (1993a) Targeted inactivation of the gene psaL encoding a subunit of Photosystem I of the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 268: 11678–11684PubMedGoogle Scholar
  11. Chitnis VP and Chitnis PR (1993b) PsaL subunit is required for the formation of Photosystem I trimers in the cyanobacterium Synechocystis sp. PCC 6803. FEBS Lett 336: 330–334CrossRefPubMedGoogle Scholar
  12. Cramer WA, Everly RM, Furbacher PN, Huang D, Tae G-S, Szczepaniak A, Cherepanov DA and Krishtalik LI (1992) Structure-function-assembly of the cytochrome complexes in oxygenic photosynthesis. In: Murata N (ed) Research in Photosynthesis, Vol II, pp 447–454. Kluwer Academic Publishers, DordrechtGoogle Scholar
  13. Dekker JP, Boekema EJ, Witt HT and Rögner M (1988) Refined purification and further characterization of oxygen-evolving and tris-treated Photosystem II particles from the thermophilic cyanobacterium Synechococcus sp. Biochim Biophys Acta 936: 307–318Google Scholar
  14. Ford RC, and Holzenburg A (1988) Investigation of the structure of the Photosystem I reaction center. EMBO J 7: 2287–2293.Google Scholar
  15. Ford RC, Picot D and Garavito RM (1987) Crystallization of Photosystem I reaction center. EMBO J 6, 1581–1586Google Scholar
  16. Fork DC and Herbert SK (1993) Electron transport and photophosphorylation by Photosystem I in vivo in plants and cyanobacteria. Photosynth Res 36: 149–168Google Scholar
  17. Golbeck JH and Bryant DA (1991) Photosystem I. Curr Top Bioenerg 16: 83–177Google Scholar
  18. Hefti A, Ford RC, Miller M, Cox RP and Engel A (1992) Analysis of the structure of Photosystem I in cyanobacterial thylakoid membranes. FEBS Lett 296: 29–32CrossRefPubMedGoogle Scholar
  19. Hladik J and Sofrova D (1991) Does the trimeric form of Photosystem I reaction center of cyanobacteria in vivo exist. Photosynth Res 29: 171–175Google Scholar
  20. Hladik J, Pospisilova L and Sofrova D (1990) Topograhy of Photosystem I in cyanobacteria. Baltscheffsky M (ed) Current Research in Photosynthesis, Vol II. pp 579–582Google Scholar
  21. Krauß N, Hinrichs W, Witt I, Fromme P, Pritzkow W, Dauter Z, Betzel C, Wilson KS, Witt HT and Saenger W (1993) Three-dimensional structure of system I of photosynthesis at 6 Å resolution. Nature 361: 326–331CrossRefGoogle Scholar
  22. Krulp J, Boekema EI, Baid D, Boonstra AI and Bögner M (1992) Isolation and structural characterization of monomeric and trimeric Photosystem I complexes (P700-FA/F B and P700-FX) from the cyanobacterium Synechocystis PCC 6803. J Biol Chem 268: 23353–23360Google Scholar
  23. Mörschel E and Schatz GH (1987) Correlation of Photosystem II complexes with exoplasmatic freeze-fracture particles of thylakoids of the cyanobacterium Synechococcus sp. Planta 172: 145–154Google Scholar
  24. Mullineaux CW (1992) Excitation energy transfer from phycobilisomes to Photosystem I and Photosystem II in a cyanobacterium. In: Murata N, (ed) Research in Photosynthesis, Vol I. pp 141–144, Kluwer Academic Publishers, DordrechtGoogle Scholar
  25. Mullineaux CW and Holzwarth AR (1991) Kinetics of excitation energy transfer in the cyanobacterial phycobilisome-photosystem II complex. Biochim Biophys Acta 1098: 68–78Google Scholar
  26. Nußberger S, Dörr K, Wand DN and Kühlbrandt W 1993 Lipid-protein interactions in crystals of plant light-harvesting complex. J Mol Biol. 232 (in press)Google Scholar
  27. Olive J, M'Bina I, Vernotte C, Astier C and Wollman FA (1986) Randomization of the EF particles in thylakoid membranes of Synechocystis 6714 upon transition from state I to state II. FEBS Lett 208: 308–312CrossRefGoogle Scholar
  28. Reed RH, Warr SRC, Richardson DL, Moore DJ and Stewart WDP (1985) Multiphasic osmotic adjustment in a euryhaline cyanobacterium. FEMS Microbiol Lett 28: 225–229CrossRefGoogle Scholar
  29. Richardson DL, Reed RH and Stewart WDP (1984) Glucosylglycerol accumulation in Synechocystis PCC 6803 in response to osmotic stress. Br Phycol J 18: 209Google Scholar
  30. Rögner M, Dekker JP, Boekema EJ and Witt HT (1987) Size, shape and mass of the oxygen-evolving Photosystem II complex from the thermophilic cyanobacterium Synechococcus sp. FEBS Lett 219: 207–211CrossRefGoogle Scholar
  31. Rögner M, Mühlenhoff U, Boekema EJ and Witt HT (1990a) Mono-, di- and trimeric PS I reaction center complexes isolated from the thermophilic cyanobacterium Synechococcus sp. Size, shape and activity. Biochim Biophys Acta 1015: 415–424Google Scholar
  32. Rögner M, Nixon PJ and Diner B (1990b) Purification and characterization of Photosystem I and Photosystem II core complexes from wild-type and phycocyanin-deficient strains of the cyanobacterium Synechocystis PCC 6803. J Biol Chem 265: 6189–6196PubMedGoogle Scholar
  33. Sprague SG, Camm EL, Green BR and Staehelin LA (1985) Reconstitution of light-harvesting complexes and Photosystem II cores into galactolipid and phospholipid liposomes. J Cell Biol 100: 552–557CrossRefPubMedGoogle Scholar
  34. Van der Lee J, Bald D, Kwa SLS, van Grondelle R, Rögner M and Dekker JP (1993) Steady-state polarized light spectroscopy of isolated Photosystem I complexes. Photosynth Res 35: 311–321CrossRefGoogle Scholar
  35. Van der Staay GWM, Boekema EJ, Dekker JP and Matthys HCP (1993) Characterization of trimeric Photosystem I particles from the prochlorophyte Prochlorothrix hollandica by electron microscopy and image analysis. Biochim Biophys Acta 1142:189–193Google Scholar
  36. Vernotte C, Astier C and Olive J (1990) State 1-state 2 adaptation in the cyanobacteria Synechocystis PCC 6714 wild type and Synechocystis PCC 6803 wild type and phycocyanin-less mutant. Photosynth Res 26: 203–212Google Scholar
  37. Witt I, Witt HT, Gerken S, Saenger W, Dekker JP and Rögner M (1987) Crystallisation of reaction center I of photosynthesis. Low-concentration crystallization of photoactive protein complexes from the cyanobacterium Synechococcus sp. FEBS Lett 221: 260–264CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Jochen Kruip
    • 1
  • Dirk Bald
    • 1
  • Egbert Boekema
    • 2
  • Matthias Rögner
    • 1
  1. 1.Institute of BotanyUniversity of MünsterMünsterGermany
  2. 2.Bioson Research Institute, Biophysical ChemistryUniversity of GroningenGroningenThe Netherlands

Personalised recommendations